|
--- |
|
license: mit |
|
datasets: |
|
- m-a-p/COIG-CQIA |
|
language: |
|
- zh |
|
- en |
|
metrics: |
|
- accuracy |
|
pipeline_tag: text2text-generation |
|
tags: |
|
- finance |
|
- legal |
|
- medical |
|
- code |
|
- biology |
|
--- |
|
|
|
# Model Summary |
|
|
|
Llama3-8B-COIG-CQIA is an instruction-tuned language model for Chinese & English users with various abilities such as roleplaying & tool-using built upon the Meta-Llama-3-8B-Instruct model. |
|
|
|
Developed by: [Wenfeng Qiu](https://github.com/summit4you) |
|
|
|
- License: [Llama-3 License](https://llama.meta.com/llama3/license/) |
|
- Base Model: Meta-Llama-3-8B-Instruct |
|
- Model Size: 8.03B |
|
- Context length: 8K |
|
|
|
# 1. Introduction |
|
|
|
Training framework: [unsloth](https://github.com/unslothai/unsloth). |
|
|
|
Training details: |
|
- epochs: 1 |
|
- learning rate: 2e-4 |
|
- learning rate scheduler type: linear |
|
- warmup steps: 5 |
|
- cutoff len (i.e. context length): 2048 |
|
- global batch size: 2 |
|
- fine-tuning type: full parameters |
|
- optimizer: adamw_8bit |
|
|
|
# 2. Usage |
|
|
|
Inference, use to `llama.cpp` or a UI based system like `GPT4All`. You can install GPT4All by going [here](https://gpt4all.io/index.html). |
|
|
|
Here is the example in `llama.cpp`. |
|
|
|
```python |
|
from llama_cpp import Llama |
|
|
|
model = Llama( |
|
"/Your/Path/To/Llama3-8B-COIG-CQIA.Q8_0.gguf", |
|
verbose=False, |
|
n_gpu_layers=-1, |
|
) |
|
|
|
system_prompt = "You are a helpful assistant." |
|
|
|
def generate_reponse(_model, _messages, _max_tokens=8192): |
|
_output = _model.create_chat_completion( |
|
_messages, |
|
stop=["<|eot_id|>", "<|end_of_text|>"], |
|
max_tokens=_max_tokens, |
|
)["choices"][0]["message"]["content"] |
|
return _output |
|
|
|
# The following are some examples |
|
|
|
messages = [ |
|
{ |
|
"role": "system", |
|
"content": system_prompt, |
|
}, |
|
{"role": "user", "content": "你是谁?"}, |
|
] |
|
|
|
|
|
print(generate_reponse(_model=model, _messages=messages), end="\n\n\n") |
|
|
|
``` |