|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
base_model: openai/whisper-medium |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- physician_dictation_gpt_4_turbo |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: Whisper Large v3 Physician Dictation GPT 4 turbo |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Physician Dictation GPT 4 Turbo |
|
type: physician_dictation_gpt_4_turbo |
|
config: default |
|
split: None |
|
args: 'config: en, split: test' |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 5.2149306023446975 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Whisper Large v3 Physician Dictation GPT 4 turbo |
|
|
|
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Physician Dictation GPT 4 Turbo dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1587 |
|
- Wer: 5.2149 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 8500 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-------:|:----:|:---------------:|:------:| |
|
| 0.0314 | 3.9683 | 500 | 0.1036 | 4.6175 | |
|
| 0.0088 | 7.9365 | 1000 | 0.1090 | 5.0712 | |
|
| 0.0009 | 11.9048 | 1500 | 0.1229 | 5.1880 | |
|
| 0.0013 | 15.8730 | 2000 | 0.1329 | 5.6506 | |
|
| 0.0031 | 19.8413 | 2500 | 0.1360 | 5.3227 | |
|
| 0.0004 | 23.8095 | 3000 | 0.1288 | 4.9589 | |
|
| 0.0008 | 27.7778 | 3500 | 0.1381 | 4.9724 | |
|
| 0.0001 | 31.7460 | 4000 | 0.1391 | 5.0667 | |
|
| 0.0001 | 35.7143 | 4500 | 0.1435 | 5.4710 | |
|
| 0.0001 | 39.6825 | 5000 | 0.1445 | 5.2688 | |
|
| 0.0002 | 43.6508 | 5500 | 0.1490 | 5.1880 | |
|
| 0.0 | 47.6190 | 6000 | 0.1510 | 5.3093 | |
|
| 0.0 | 51.5873 | 6500 | 0.1540 | 5.2868 | |
|
| 0.0 | 55.5556 | 7000 | 0.1559 | 5.3452 | |
|
| 0.0 | 59.5238 | 7500 | 0.1573 | 5.2104 | |
|
| 0.0 | 63.4921 | 8000 | 0.1583 | 5.2239 | |
|
| 0.0 | 67.4603 | 8500 | 0.1587 | 5.2149 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.2 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|