metadata
base_model: microsoft/Phi-3.5-mini-instruct
library_name: peft
license: mit
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: checkpoint_dir
results: []
checkpoint_dir
This model is a fine-tuned version of microsoft/Phi-3.5-mini-instruct on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5253
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 8
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.7134 | 0.0405 | 3 | 1.8221 |
1.7619 | 0.0811 | 6 | 1.6961 |
1.5449 | 0.1216 | 9 | 1.5453 |
1.3625 | 0.1622 | 12 | 1.3982 |
1.1389 | 0.2027 | 15 | 1.2786 |
1.1091 | 0.2432 | 18 | 1.1889 |
1.0605 | 0.2838 | 21 | 1.1050 |
0.9908 | 0.3243 | 24 | 1.0395 |
0.9653 | 0.3649 | 27 | 0.9886 |
0.9258 | 0.4054 | 30 | 0.9401 |
0.8964 | 0.4459 | 33 | 0.8945 |
0.8189 | 0.4865 | 36 | 0.8615 |
0.7202 | 0.5270 | 39 | 0.8325 |
0.7553 | 0.5676 | 42 | 0.8109 |
0.7415 | 0.6081 | 45 | 0.7911 |
0.6421 | 0.6486 | 48 | 0.7730 |
0.7638 | 0.6892 | 51 | 0.7411 |
0.7495 | 0.7297 | 54 | 0.7208 |
0.7678 | 0.7703 | 57 | 0.7102 |
0.7027 | 0.8108 | 60 | 0.7002 |
0.7106 | 0.8514 | 63 | 0.6892 |
0.8461 | 0.8919 | 66 | 0.6852 |
0.5863 | 0.9324 | 69 | 0.6826 |
0.7466 | 0.9730 | 72 | 0.6802 |
0.5847 | 1.0135 | 75 | 0.6696 |
0.5349 | 1.0541 | 78 | 0.6590 |
0.5991 | 1.0946 | 81 | 0.6560 |
0.5777 | 1.1351 | 84 | 0.6526 |
0.6342 | 1.1757 | 87 | 0.6488 |
0.5053 | 1.2162 | 90 | 0.6494 |
0.4909 | 1.2568 | 93 | 0.6485 |
0.5154 | 1.2973 | 96 | 0.6458 |
0.4728 | 1.3378 | 99 | 0.6375 |
0.5648 | 1.3784 | 102 | 0.6327 |
0.4878 | 1.4189 | 105 | 0.6260 |
0.5677 | 1.4595 | 108 | 0.6165 |
0.6598 | 1.5 | 111 | 0.6059 |
0.5811 | 1.5405 | 114 | 0.6021 |
0.5984 | 1.5811 | 117 | 0.6018 |
0.4477 | 1.6216 | 120 | 0.6010 |
0.5762 | 1.6622 | 123 | 0.5944 |
0.7896 | 1.7027 | 126 | 0.5924 |
0.449 | 1.7432 | 129 | 0.5849 |
0.6014 | 1.7838 | 132 | 0.5793 |
0.4798 | 1.8243 | 135 | 0.5744 |
0.4943 | 1.8649 | 138 | 0.5715 |
0.3907 | 1.9054 | 141 | 0.5692 |
0.6352 | 1.9459 | 144 | 0.5631 |
0.469 | 1.9865 | 147 | 0.5633 |
0.4819 | 2.0270 | 150 | 0.5623 |
0.7567 | 2.0676 | 153 | 0.5610 |
0.533 | 2.1081 | 156 | 0.5641 |
0.4195 | 2.1486 | 159 | 0.5615 |
0.4015 | 2.1892 | 162 | 0.5609 |
0.2958 | 2.2297 | 165 | 0.5642 |
0.4477 | 2.2703 | 168 | 0.5602 |
0.4111 | 2.3108 | 171 | 0.5530 |
0.3958 | 2.3514 | 174 | 0.5495 |
0.3053 | 2.3919 | 177 | 0.5437 |
0.4952 | 2.4324 | 180 | 0.5400 |
0.5617 | 2.4730 | 183 | 0.5322 |
0.298 | 2.5135 | 186 | 0.5273 |
0.5439 | 2.5541 | 189 | 0.5256 |
0.5791 | 2.5946 | 192 | 0.5215 |
0.4429 | 2.6351 | 195 | 0.5205 |
0.4454 | 2.6757 | 198 | 0.5251 |
0.4071 | 2.7162 | 201 | 0.5267 |
0.3948 | 2.7568 | 204 | 0.5327 |
0.3196 | 2.7973 | 207 | 0.5342 |
0.3567 | 2.8378 | 210 | 0.5344 |
0.5284 | 2.8784 | 213 | 0.5292 |
0.491 | 2.9189 | 216 | 0.5182 |
0.4267 | 2.9595 | 219 | 0.5137 |
0.3587 | 3.0 | 222 | 0.5098 |
0.3587 | 3.0405 | 225 | 0.5131 |
0.377 | 3.0811 | 228 | 0.5200 |
0.6423 | 3.1216 | 231 | 0.5214 |
0.4839 | 3.1622 | 234 | 0.5139 |
0.566 | 3.2027 | 237 | 0.5123 |
0.38 | 3.2432 | 240 | 0.5172 |
0.3995 | 3.2838 | 243 | 0.5207 |
0.3486 | 3.3243 | 246 | 0.5148 |
0.2418 | 3.3649 | 249 | 0.5104 |
0.3178 | 3.4054 | 252 | 0.5086 |
0.4065 | 3.4459 | 255 | 0.5031 |
0.3472 | 3.4865 | 258 | 0.5050 |
0.4543 | 3.5270 | 261 | 0.5046 |
0.4066 | 3.5676 | 264 | 0.5020 |
0.2606 | 3.6081 | 267 | 0.5010 |
0.2332 | 3.6486 | 270 | 0.5007 |
0.5026 | 3.6892 | 273 | 0.5003 |
0.3901 | 3.7297 | 276 | 0.5057 |
0.3552 | 3.7703 | 279 | 0.5126 |
0.3921 | 3.8108 | 282 | 0.5179 |
0.3366 | 3.8514 | 285 | 0.5092 |
0.3706 | 3.8919 | 288 | 0.5008 |
0.2791 | 3.9324 | 291 | 0.4961 |
0.2247 | 3.9730 | 294 | 0.4968 |
0.2879 | 4.0135 | 297 | 0.4971 |
0.3355 | 4.0541 | 300 | 0.5036 |
0.3928 | 4.0946 | 303 | 0.5023 |
0.2399 | 4.1351 | 306 | 0.5056 |
0.3396 | 4.1757 | 309 | 0.5089 |
0.2602 | 4.2162 | 312 | 0.5091 |
0.2565 | 4.2568 | 315 | 0.5110 |
0.24 | 4.2973 | 318 | 0.5156 |
0.2364 | 4.3378 | 321 | 0.5216 |
0.3694 | 4.3784 | 324 | 0.5224 |
0.2185 | 4.4189 | 327 | 0.5183 |
0.337 | 4.4595 | 330 | 0.5119 |
0.3404 | 4.5 | 333 | 0.5084 |
0.3049 | 4.5405 | 336 | 0.5071 |
0.4811 | 4.5811 | 339 | 0.5098 |
0.338 | 4.6216 | 342 | 0.5092 |
0.305 | 4.6622 | 345 | 0.5090 |
0.5273 | 4.7027 | 348 | 0.5079 |
0.3122 | 4.7432 | 351 | 0.5044 |
0.2995 | 4.7838 | 354 | 0.4991 |
0.2654 | 4.8243 | 357 | 0.4935 |
0.3992 | 4.8649 | 360 | 0.4946 |
0.2272 | 4.9054 | 363 | 0.5003 |
0.3094 | 4.9459 | 366 | 0.5026 |
0.2773 | 4.9865 | 369 | 0.5021 |
0.3934 | 5.0270 | 372 | 0.4993 |
0.271 | 5.0676 | 375 | 0.5015 |
0.3928 | 5.1081 | 378 | 0.5040 |
0.2105 | 5.1486 | 381 | 0.5134 |
0.2548 | 5.1892 | 384 | 0.5182 |
0.2424 | 5.2297 | 387 | 0.5104 |
0.4469 | 5.2703 | 390 | 0.5122 |
0.2866 | 5.3108 | 393 | 0.5112 |
0.2958 | 5.3514 | 396 | 0.5090 |
0.2034 | 5.3919 | 399 | 0.5051 |
0.4091 | 5.4324 | 402 | 0.5023 |
0.1415 | 5.4730 | 405 | 0.5059 |
0.4137 | 5.5135 | 408 | 0.5098 |
0.2784 | 5.5541 | 411 | 0.5134 |
0.158 | 5.5946 | 414 | 0.5160 |
0.4701 | 5.6351 | 417 | 0.5183 |
0.2256 | 5.6757 | 420 | 0.5168 |
0.1868 | 5.7162 | 423 | 0.5147 |
0.2868 | 5.7568 | 426 | 0.5130 |
0.2142 | 5.7973 | 429 | 0.5147 |
0.2693 | 5.8378 | 432 | 0.5130 |
0.2882 | 5.8784 | 435 | 0.5108 |
0.3243 | 5.9189 | 438 | 0.5098 |
0.343 | 5.9595 | 441 | 0.5067 |
0.2602 | 6.0 | 444 | 0.5002 |
0.2237 | 6.0405 | 447 | 0.5001 |
0.3727 | 6.0811 | 450 | 0.5039 |
0.2471 | 6.1216 | 453 | 0.5076 |
0.4095 | 6.1622 | 456 | 0.5145 |
0.2445 | 6.2027 | 459 | 0.5188 |
0.2387 | 6.2432 | 462 | 0.5231 |
0.2322 | 6.2838 | 465 | 0.5258 |
0.2998 | 6.3243 | 468 | 0.5270 |
0.2463 | 6.3649 | 471 | 0.5251 |
0.1931 | 6.4054 | 474 | 0.5237 |
0.2254 | 6.4459 | 477 | 0.5187 |
0.278 | 6.4865 | 480 | 0.5177 |
0.3654 | 6.5270 | 483 | 0.5162 |
0.2886 | 6.5676 | 486 | 0.5130 |
0.229 | 6.6081 | 489 | 0.5150 |
0.2361 | 6.6486 | 492 | 0.5158 |
0.1497 | 6.6892 | 495 | 0.5165 |
0.2926 | 6.7297 | 498 | 0.5179 |
0.2979 | 6.7703 | 501 | 0.5211 |
0.244 | 6.8108 | 504 | 0.5200 |
0.2846 | 6.8514 | 507 | 0.5197 |
0.1897 | 6.8919 | 510 | 0.5200 |
0.2106 | 6.9324 | 513 | 0.5210 |
0.3168 | 6.9730 | 516 | 0.5210 |
0.2002 | 7.0135 | 519 | 0.5192 |
0.3515 | 7.0541 | 522 | 0.5202 |
0.1807 | 7.0946 | 525 | 0.5214 |
0.2331 | 7.1351 | 528 | 0.5212 |
0.1571 | 7.1757 | 531 | 0.5215 |
0.186 | 7.2162 | 534 | 0.5194 |
0.2281 | 7.2568 | 537 | 0.5207 |
0.2534 | 7.2973 | 540 | 0.5219 |
0.3643 | 7.3378 | 543 | 0.5212 |
0.4516 | 7.3784 | 546 | 0.5203 |
0.181 | 7.4189 | 549 | 0.5226 |
0.256 | 7.4595 | 552 | 0.5214 |
0.2802 | 7.5 | 555 | 0.5212 |
0.1913 | 7.5405 | 558 | 0.5196 |
0.2293 | 7.5811 | 561 | 0.5207 |
0.2282 | 7.6216 | 564 | 0.5213 |
0.1954 | 7.6622 | 567 | 0.5225 |
0.3199 | 7.7027 | 570 | 0.5216 |
0.2687 | 7.7432 | 573 | 0.5231 |
0.2122 | 7.7838 | 576 | 0.5218 |
0.3616 | 7.8243 | 579 | 0.5228 |
0.1206 | 7.8649 | 582 | 0.5212 |
0.148 | 7.9054 | 585 | 0.5216 |
0.3779 | 7.9459 | 588 | 0.5224 |
0.272 | 7.9865 | 591 | 0.5253 |
Framework versions
- PEFT 0.13.2
- Transformers 4.45.2
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0