sudy-super
commited on
Commit
•
935e343
1
Parent(s):
61db68f
Upload 2 files
Browse files- modeling_co_encoder.py +592 -0
- tokenization_co_encoder.py +194 -0
modeling_co_encoder.py
ADDED
@@ -0,0 +1,592 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
"""PyTorch CoEncoder model."""
|
3 |
+
|
4 |
+
import math
|
5 |
+
from dataclasses import dataclass
|
6 |
+
from typing import List, Optional, Tuple, Union
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import torch
|
10 |
+
import torch.utils.checkpoint
|
11 |
+
from torch import nn
|
12 |
+
|
13 |
+
from transformers import PreTrainedModel
|
14 |
+
from transformers.activations import ACT2FN
|
15 |
+
from transformers.image_processing_utils import select_best_resolution
|
16 |
+
from transformers.modeling_outputs import ModelOutput
|
17 |
+
from transformers.utils import (
|
18 |
+
add_start_docstrings,
|
19 |
+
add_start_docstrings_to_model_forward,
|
20 |
+
logging,
|
21 |
+
replace_return_docstrings,
|
22 |
+
is_flash_attn_2_available,
|
23 |
+
)
|
24 |
+
from transformers import AutoTokenizer, AutoModel, AutoModelForCausalLM
|
25 |
+
from .configuration_co_encoder import CoEncoderConfig
|
26 |
+
|
27 |
+
|
28 |
+
logger = logging.get_logger(__name__)
|
29 |
+
|
30 |
+
_CONFIG_FOR_DOC = "CoEncoderConfig"
|
31 |
+
|
32 |
+
|
33 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
34 |
+
"""
|
35 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
36 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
37 |
+
"""
|
38 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
39 |
+
if n_rep == 1:
|
40 |
+
return hidden_states
|
41 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
42 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
43 |
+
|
44 |
+
|
45 |
+
@dataclass
|
46 |
+
class CoEncoderCausalLMOutputWithPast(ModelOutput):
|
47 |
+
"""
|
48 |
+
Base class for CoEncoder causal language model (or autoregressive) outputs.
|
49 |
+
|
50 |
+
Args:
|
51 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
52 |
+
Language modeling loss (for next-token prediction).
|
53 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
54 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
55 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
56 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.context_config.num_layers`, with each tuple having 2 tensors of shape
|
57 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
58 |
+
|
59 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
60 |
+
`past_key_values` input) to speed up sequential decoding.
|
61 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
62 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
63 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
64 |
+
|
65 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
66 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
67 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
68 |
+
sequence_length)`.
|
69 |
+
|
70 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
71 |
+
heads.
|
72 |
+
context_hidden_states (`torch.FloatTensor`, *optional*):
|
73 |
+
A `torch.FloatTensor` of size (batch_size, sequence_length, hidden_size)`.
|
74 |
+
context_hidden_states of the model produced by the context encoder and after projecting the last hidden state.
|
75 |
+
"""
|
76 |
+
|
77 |
+
loss: Optional[torch.FloatTensor] = None
|
78 |
+
logits: torch.FloatTensor = None
|
79 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None
|
80 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
81 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
82 |
+
context_hidden_states: Optional[torch.FloatTensor] = None
|
83 |
+
|
84 |
+
|
85 |
+
class CoEncoderDynamicAttention(nn.Module):
|
86 |
+
"""
|
87 |
+
Attention mechanism adapted for dynamic output size based on Mistral's architecture. This attention layer computes
|
88 |
+
the output attention scores which are used to determine the pooling size dynamically.
|
89 |
+
"""
|
90 |
+
|
91 |
+
def __init__(self, config: CoEncoderConfig):
|
92 |
+
super().__init__()
|
93 |
+
|
94 |
+
self.hidden_size = config.context_config.hidden_size
|
95 |
+
self.num_heads = config.context_config.num_attention_heads
|
96 |
+
self.head_dim = getattr(config.context_config, "head_dim", self.hidden_size // self.num_heads)
|
97 |
+
self.num_key_value_heads = config.context_config.num_key_value_heads
|
98 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
99 |
+
|
100 |
+
# Query, Key, Value, and Output Projections
|
101 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
102 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
103 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
104 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, 1, bias=False)
|
105 |
+
|
106 |
+
def forward(
|
107 |
+
self,
|
108 |
+
hidden_states,
|
109 |
+
output_attentions=False,
|
110 |
+
):
|
111 |
+
# Get input dimensions
|
112 |
+
bsz, seq_len, hidden_size = hidden_states.size()
|
113 |
+
|
114 |
+
# Query, Key, Value projections
|
115 |
+
query_states = self.q_proj(hidden_states)
|
116 |
+
key_states = self.k_proj(hidden_states)
|
117 |
+
value_states = self.v_proj(hidden_states)
|
118 |
+
|
119 |
+
# Reshape and transpose to [batch_size, num_heads, seq_len, head_dim]
|
120 |
+
query_states = query_states.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
|
121 |
+
key_states = key_states.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
|
122 |
+
value_states = value_states.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
|
123 |
+
|
124 |
+
# Repeat key and value states for multi-head attention
|
125 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
126 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
127 |
+
|
128 |
+
# Compute attention scores
|
129 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
130 |
+
|
131 |
+
# Apply softmax to get attention probabilities
|
132 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
133 |
+
|
134 |
+
# Apply attention to values
|
135 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
136 |
+
|
137 |
+
# Reshape attention output
|
138 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
139 |
+
attn_output = attn_output.reshape(bsz, seq_len, -1)
|
140 |
+
|
141 |
+
# Project to output dimension
|
142 |
+
attn_output = self.o_proj(attn_output)
|
143 |
+
|
144 |
+
if not output_attentions:
|
145 |
+
attn_weights = None
|
146 |
+
|
147 |
+
return attn_output, attn_weights
|
148 |
+
|
149 |
+
|
150 |
+
class CoEncoderDynamicWeightedAvgPool1d(nn.Module):
|
151 |
+
"""
|
152 |
+
A module that dynamically determines the output size based on input
|
153 |
+
and performs weighted average pooling with separate attention mechanisms
|
154 |
+
for output size estimation and weighted pooling.
|
155 |
+
"""
|
156 |
+
def __init__(self, config, output_size_min=32, output_size_max=131072):
|
157 |
+
super().__init__()
|
158 |
+
# Attention mechanism for estimating output size
|
159 |
+
self.size_estimation_attention = CoEncoderDynamicAttention(config)
|
160 |
+
# Attention mechanism for weighted pooling
|
161 |
+
self.weighted_pooling_attention = CoEncoderDynamicAttention(config)
|
162 |
+
self.output_size_min = output_size_min
|
163 |
+
self.output_size_max = (
|
164 |
+
config.context_config.max_position_embeddings if config.context_config.max_position_embeddings is not None else output_size_max
|
165 |
+
)
|
166 |
+
self.scale_param = nn.Parameter(torch.tensor(0.01))
|
167 |
+
|
168 |
+
def forward(self, hidden_states):
|
169 |
+
"""
|
170 |
+
Args:
|
171 |
+
x: Input tensor of shape (batch_size, seq_len, hidden_size)
|
172 |
+
|
173 |
+
Returns:
|
174 |
+
Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
175 |
+
- pooled_output: Padded tensor of compressed sequences (batch_size, max_pooled_len, hidden_size)
|
176 |
+
- attention_mask: Binary mask indicating valid tokens (batch_size, max_pooled_len)
|
177 |
+
- dynamic_output_sizes: Dynamic output sizes for each batch (batch_size,)
|
178 |
+
"""
|
179 |
+
batch_size, seq_len, hidden_size = hidden_states.size()
|
180 |
+
device = hidden_states.device
|
181 |
+
|
182 |
+
# Estimate output size using attention mechanism
|
183 |
+
# attn_output_size: (batch_size, seq_len, 1)
|
184 |
+
attn_output_size, _ = self.size_estimation_attention(hidden_states)
|
185 |
+
|
186 |
+
# Calculate dynamic output sizes for each batch item
|
187 |
+
# (batch_size, seq_len, 1) -> (batch_size, 1)
|
188 |
+
batch_attn_means = torch.sigmoid(attn_output_size).mean(dim=1)
|
189 |
+
scaled_batch_means = batch_attn_means * self.scale_param
|
190 |
+
|
191 |
+
# Calculate dynamic output sizes (batch_size,)
|
192 |
+
dynamic_output_sizes = (
|
193 |
+
scaled_batch_means * (self.output_size_max - self.output_size_min)
|
194 |
+
+ self.output_size_min
|
195 |
+
).int().squeeze(-1)
|
196 |
+
|
197 |
+
# Get the maximum output size across the batch
|
198 |
+
max_pooled_len = dynamic_output_sizes.max().item()
|
199 |
+
|
200 |
+
# Compute attention weights for weighted pooling
|
201 |
+
# attn_output_weights: (batch_size, seq_len, 1)
|
202 |
+
attn_output_weights, _ = self.weighted_pooling_attention(hidden_states)
|
203 |
+
# Normalize with sigmoid function for use as weights
|
204 |
+
# attention_weights: (batch_size, seq_len)
|
205 |
+
attention_weights = torch.sigmoid(attn_output_weights).squeeze(-1)
|
206 |
+
|
207 |
+
# Initialize output tensors
|
208 |
+
# pooled_output: (batch_size, max_pooled_len, hidden_size)
|
209 |
+
pooled_output = torch.zeros(batch_size, max_pooled_len, hidden_size, device=device)
|
210 |
+
# attention_mask: (batch_size, max_pooled_len)
|
211 |
+
attention_mask = torch.zeros(batch_size, max_pooled_len, dtype=torch.bool, device=device)
|
212 |
+
|
213 |
+
for batch_idx in range(batch_size):
|
214 |
+
output_size = dynamic_output_sizes[batch_idx].item()
|
215 |
+
item_input = hidden_states[batch_idx] # Shape: (seq_len, hidden_size)
|
216 |
+
item_weights = attention_weights[batch_idx] # Shape: (seq_len)
|
217 |
+
|
218 |
+
# Perform weighted pooling
|
219 |
+
pooled_values = []
|
220 |
+
# Split the sequence evenly
|
221 |
+
intervals = torch.linspace(0, seq_len, steps=output_size + 1).long()
|
222 |
+
for i in range(output_size):
|
223 |
+
start = intervals[i].item()
|
224 |
+
end = intervals[i + 1].item()
|
225 |
+
chunk_input = item_input[start:end] # Shape: (chunk_size, hidden_size)
|
226 |
+
chunk_weights = item_weights[start:end] # Shape: (chunk_size)
|
227 |
+
if chunk_weights.sum() == 0:
|
228 |
+
# If the sum of weights is zero, add a zero vector
|
229 |
+
pooled_value = torch.zeros(hidden_size, device=device)
|
230 |
+
else:
|
231 |
+
# Calculate weighted average
|
232 |
+
weighted_input = chunk_input * chunk_weights.unsqueeze(-1) # Shape: (chunk_size, hidden_size)
|
233 |
+
pooled_value = weighted_input.sum(dim=0) / (chunk_weights.sum() + 1e-8) # Shape: (hidden_size)
|
234 |
+
pooled_values.append(pooled_value)
|
235 |
+
# Convert the result to a tensor
|
236 |
+
pooled_values = torch.stack(pooled_values) # Shape: (output_size, hidden_size)
|
237 |
+
# Store the result
|
238 |
+
pooled_output[batch_idx, -output_size:] = pooled_values.squeeze(0)
|
239 |
+
attention_mask[batch_idx, -output_size:] = True
|
240 |
+
|
241 |
+
return pooled_output, attention_mask, dynamic_output_sizes
|
242 |
+
|
243 |
+
|
244 |
+
class CoEncoderContextLanguageConnector(nn.Module):
|
245 |
+
def __init__(self, config: CoEncoderConfig):
|
246 |
+
super().__init__()
|
247 |
+
|
248 |
+
self.dynamic_pooling = CoEncoderDynamicWeightedAvgPool1d(config)
|
249 |
+
|
250 |
+
self.linear_1 = nn.Linear(config.context_config.hidden_size, config.text_config.hidden_size, bias=True)
|
251 |
+
self.act = ACT2FN[config.projector_hidden_act]
|
252 |
+
self.linear_2 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True)
|
253 |
+
|
254 |
+
def forward(self, context_features):
|
255 |
+
# context_features: [batch_size, seq_len, hidden_size]
|
256 |
+
# Apply dynamic adaptive average pooling with attention
|
257 |
+
pooled_output, attention_mask, dynamic_output_sizes = self.dynamic_pooling(context_features)
|
258 |
+
# pooled_output: [batch_size, max_pooled_len, hidden_size]
|
259 |
+
|
260 |
+
hidden_states = self.linear_1(pooled_output)
|
261 |
+
hidden_states = self.act(hidden_states)
|
262 |
+
hidden_states = self.linear_2(hidden_states)
|
263 |
+
|
264 |
+
return hidden_states, attention_mask
|
265 |
+
|
266 |
+
|
267 |
+
class CoEncoderContextTower(nn.Module):
|
268 |
+
def __init__(self, config: CoEncoderConfig):
|
269 |
+
super().__init__()
|
270 |
+
|
271 |
+
self.tower = AutoModelForCausalLM.from_config(
|
272 |
+
config.context_config,
|
273 |
+
attn_implementation="flash_attention_2" if is_flash_attn_2_available() else "eager"
|
274 |
+
)
|
275 |
+
self.select_layer = config.context_feature_layer
|
276 |
+
|
277 |
+
def feature_select(self, llm_outputs):
|
278 |
+
hidden_states = llm_outputs.hidden_states
|
279 |
+
return hidden_states[self.select_layer]
|
280 |
+
|
281 |
+
def forward(self, inputs):
|
282 |
+
outputs = self.tower(inputs, output_hidden_states=True)
|
283 |
+
features = self.feature_select(outputs)
|
284 |
+
return features
|
285 |
+
|
286 |
+
|
287 |
+
class CoEncoderPreTrainedModel(PreTrainedModel):
|
288 |
+
config_class = CoEncoderConfig
|
289 |
+
base_model_prefix = "model"
|
290 |
+
supports_gradient_checkpointing = True
|
291 |
+
_no_split_modules = ["CoEncoderContextLanguageConnector", "CoEncoderContextTower"]
|
292 |
+
_skip_keys_device_placement = ["past_key_values"]
|
293 |
+
_supports_flash_attn_2 = True
|
294 |
+
_supports_sdpa = True
|
295 |
+
_supports_cache_class = True
|
296 |
+
_supports_quantized_cache = True
|
297 |
+
_supports_static_cache = True
|
298 |
+
|
299 |
+
def _init_weights(self, module):
|
300 |
+
std = (
|
301 |
+
self.config.initializer_range
|
302 |
+
if hasattr(self.config, "initializer_range")
|
303 |
+
else self.config.text_config.initializer_range
|
304 |
+
)
|
305 |
+
if isinstance(module, nn.Linear):
|
306 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
307 |
+
if module.bias is not None:
|
308 |
+
module.bias.data.zero_()
|
309 |
+
elif isinstance(module, nn.Embedding):
|
310 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
311 |
+
if module.padding_idx is not None:
|
312 |
+
module.weight.data[module.padding_idx].zero_()
|
313 |
+
|
314 |
+
|
315 |
+
class CoEncoderForConditionalGeneration(CoEncoderPreTrainedModel):
|
316 |
+
def __init__(self, config: CoEncoderConfig):
|
317 |
+
super().__init__(config)
|
318 |
+
self.context_tower = CoEncoderContextTower(config)
|
319 |
+
self.connector = CoEncoderContextLanguageConnector(config)
|
320 |
+
|
321 |
+
self.language_model = AutoModelForCausalLM.from_config(
|
322 |
+
config.text_config,
|
323 |
+
attn_implementation="flash_attention_2" if is_flash_attn_2_available() else "eager"
|
324 |
+
)
|
325 |
+
|
326 |
+
self.vocab_size = config.text_config.vocab_size
|
327 |
+
self.ignore_index = config.ignore_index if hasattr(config, 'ignore_index') else -100
|
328 |
+
self.begin_of_context_token_id = config.begin_of_context_token_id
|
329 |
+
self.end_of_context_token_id = config.end_of_context_token_id
|
330 |
+
|
331 |
+
self.post_init()
|
332 |
+
|
333 |
+
def get_input_embeddings(self):
|
334 |
+
return self.language_model.get_input_embeddings()
|
335 |
+
|
336 |
+
def set_input_embeddings(self, value):
|
337 |
+
self.language_model.set_input_embeddings(value)
|
338 |
+
|
339 |
+
def get_output_embeddings(self):
|
340 |
+
return self.language_model.get_output_embeddings()
|
341 |
+
|
342 |
+
def set_output_embeddings(self, new_embeddings):
|
343 |
+
self.language_model.set_output_embeddings(new_embeddings)
|
344 |
+
|
345 |
+
def set_decoder(self, decoder):
|
346 |
+
self.language_model.set_decoder(decoder)
|
347 |
+
|
348 |
+
def get_decoder(self):
|
349 |
+
return self.language_model.get_decoder()
|
350 |
+
|
351 |
+
def tie_weights(self):
|
352 |
+
return self.language_model.tie_weights()
|
353 |
+
|
354 |
+
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding:
|
355 |
+
model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
|
356 |
+
# update vocab size
|
357 |
+
self.config.text_config.vocab_size = model_embeds.num_embeddings
|
358 |
+
self.vocab_size = model_embeds.num_embeddings
|
359 |
+
return model_embeds
|
360 |
+
|
361 |
+
def _merge_context_features(
|
362 |
+
self,
|
363 |
+
context_features,
|
364 |
+
inputs_embeds,
|
365 |
+
input_ids,
|
366 |
+
attention_mask,
|
367 |
+
position_ids=None,
|
368 |
+
labels=None,
|
369 |
+
context_attention_mask=None,
|
370 |
+
):
|
371 |
+
batch_size, seq_length, embed_dim = inputs_embeds.shape
|
372 |
+
context_seq_len = context_features.size(1)
|
373 |
+
|
374 |
+
# Create embeddings for begin and end of context tokens
|
375 |
+
begin_context_embed = self.get_input_embeddings()(torch.tensor(self.begin_of_context_token_id, device=context_features.device))
|
376 |
+
end_context_embed = self.get_input_embeddings()(torch.tensor(self.end_of_context_token_id, device=context_features.device))
|
377 |
+
|
378 |
+
# Determine the actual lengths of context sequences (excluding padding)
|
379 |
+
if context_attention_mask is not None:
|
380 |
+
# context_attention_mask: [batch_size, context_seq_len, 1]
|
381 |
+
context_attention_mask = context_attention_mask.squeeze(-1) # [batch_size, context_seq_len]
|
382 |
+
# Sum over sequence length to get actual lengths
|
383 |
+
context_lengths = context_attention_mask.sum(dim=1).long() # [batch_size]
|
384 |
+
else:
|
385 |
+
# If no context_attention_mask is provided, assume full length
|
386 |
+
context_lengths = torch.full((batch_size,), context_seq_len, device=context_features.device, dtype=torch.long)
|
387 |
+
context_attention_mask = torch.ones(batch_size, context_seq_len, device=context_features.device, dtype=torch.long)
|
388 |
+
|
389 |
+
# Rearrange context features to include padding at the beginning
|
390 |
+
# Identify the maximum context length (excluding padding)
|
391 |
+
max_context_length = context_lengths.max().item()
|
392 |
+
# Calculate the amount of padding needed for each sample
|
393 |
+
padding_lengths = context_seq_len - context_lengths # [batch_size]
|
394 |
+
|
395 |
+
# Create new context_features with padding at the beginning
|
396 |
+
new_context_features = []
|
397 |
+
for i in range(batch_size):
|
398 |
+
padding_len = padding_lengths[i].item()
|
399 |
+
# Create padding embeddings (zeros)
|
400 |
+
padding_embed = torch.zeros(padding_len, embed_dim, device=context_features.device)
|
401 |
+
# Get actual context features (excluding padding)
|
402 |
+
actual_context = context_features[i, padding_len:context_seq_len]
|
403 |
+
# Concatenate padding, begin token, actual context, end token
|
404 |
+
sample_context = torch.cat([
|
405 |
+
padding_embed,
|
406 |
+
begin_context_embed.unsqueeze(0),
|
407 |
+
actual_context,
|
408 |
+
end_context_embed.unsqueeze(0)
|
409 |
+
], dim=0) # [context_seq_len + 2, embed_dim]
|
410 |
+
new_context_features.append(sample_context)
|
411 |
+
# Stack to create [batch_size, new_context_seq_len, embed_dim]
|
412 |
+
context_features = torch.stack(new_context_features, dim=0)
|
413 |
+
new_context_seq_len = context_features.size(1)
|
414 |
+
|
415 |
+
# Update context_attention_mask accordingly
|
416 |
+
new_context_attention_mask = []
|
417 |
+
for i in range(batch_size):
|
418 |
+
padding_len = padding_lengths[i].item()
|
419 |
+
# Create padding mask (zeros)
|
420 |
+
padding_mask = torch.zeros(padding_len, device=context_features.device, dtype=attention_mask.dtype)
|
421 |
+
# Begin and end token masks
|
422 |
+
begin_attention = torch.ones(1, device=context_features.device, dtype=attention_mask.dtype)
|
423 |
+
end_attention = torch.ones(1, device=context_features.device, dtype=attention_mask.dtype)
|
424 |
+
# Actual context attention mask (excluding padding)
|
425 |
+
actual_mask = context_attention_mask[i, padding_len:context_seq_len]
|
426 |
+
# Concatenate masks
|
427 |
+
sample_mask = torch.cat([
|
428 |
+
padding_mask,
|
429 |
+
begin_attention,
|
430 |
+
actual_mask,
|
431 |
+
end_attention
|
432 |
+
], dim=0) # [context_seq_len + 2]
|
433 |
+
new_context_attention_mask.append(sample_mask)
|
434 |
+
# Stack to create [batch_size, new_context_seq_len]
|
435 |
+
context_attention_mask = torch.stack(new_context_attention_mask, dim=0)
|
436 |
+
|
437 |
+
# Concatenate context features with input embeddings
|
438 |
+
new_inputs_embeds = torch.cat([context_features, inputs_embeds], dim=1) # [batch_size, total_seq_len, embed_dim]
|
439 |
+
|
440 |
+
# Concatenate attention masks
|
441 |
+
new_attention_mask = torch.cat([context_attention_mask, attention_mask], dim=1)
|
442 |
+
|
443 |
+
# Create new position_ids
|
444 |
+
total_seq_len = new_inputs_embeds.size(1)
|
445 |
+
new_position_ids = torch.arange(total_seq_len, device=input_ids.device).unsqueeze(0).expand(batch_size, -1)
|
446 |
+
|
447 |
+
# Update labels if provided
|
448 |
+
if labels is not None:
|
449 |
+
# Create ignore labels for context (including padding and special tokens)
|
450 |
+
context_labels = torch.full((batch_size, new_context_seq_len), self.ignore_index, device=labels.device, dtype=labels.dtype)
|
451 |
+
new_labels = torch.cat([context_labels, labels], dim=1)
|
452 |
+
else:
|
453 |
+
new_labels = None
|
454 |
+
|
455 |
+
return new_inputs_embeds, new_attention_mask, new_position_ids, new_labels
|
456 |
+
|
457 |
+
|
458 |
+
@replace_return_docstrings(output_type=CoEncoderCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
459 |
+
def forward(
|
460 |
+
self,
|
461 |
+
input_ids: torch.LongTensor = None,
|
462 |
+
context_input_ids: torch.LongTensor = None,
|
463 |
+
context_attention_mask: Optional[torch.Tensor] = None,
|
464 |
+
attention_mask: Optional[torch.Tensor] = None,
|
465 |
+
position_ids: Optional[torch.LongTensor] = None,
|
466 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
467 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
468 |
+
labels: Optional[torch.LongTensor] = None,
|
469 |
+
use_cache: Optional[bool] = None,
|
470 |
+
output_attentions: Optional[bool] = None,
|
471 |
+
output_hidden_states: Optional[bool] = None,
|
472 |
+
return_dict: Optional[bool] = None,
|
473 |
+
) -> Union[Tuple, CoEncoderCausalLMOutputWithPast]:
|
474 |
+
"""
|
475 |
+
Perform a forward pass through the CoEncoder model, optionally conditioning on context input.
|
476 |
+
|
477 |
+
Args:
|
478 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
479 |
+
Token IDs of the input sequence.
|
480 |
+
context_input_ids (`torch.LongTensor` of shape `(batch_size, context_sequence_length)`, *optional*):
|
481 |
+
Token IDs of the context input sequence.
|
482 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
483 |
+
Mask to avoid performing attention on padding token indices.
|
484 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
485 |
+
Indices of positions of each input sequence token.
|
486 |
+
past_key_values (`List[torch.FloatTensor]`, *optional*):
|
487 |
+
Pre-computed hidden-states (key and value tensors) that can be used to speed up sequential decoding.
|
488 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
489 |
+
Optionally, instead of passing `input_ids`, you can pass an embedded representation directly.
|
490 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
491 |
+
Labels for computing the language modeling loss.
|
492 |
+
use_cache (`bool`, *optional*):
|
493 |
+
If `True`, past key values will be used to speed up decoding.
|
494 |
+
output_attentions (`bool`, *optional*):
|
495 |
+
If `True`, return the attention tensors for each layer.
|
496 |
+
output_hidden_states (`bool`, *optional*):
|
497 |
+
If `True`, return the hidden states of all layers.
|
498 |
+
return_dict (`bool`, *optional*):
|
499 |
+
If `True`, return a `CoEncoderCausalLMOutputWithPast` instead of a plain tuple.
|
500 |
+
|
501 |
+
Returns:
|
502 |
+
`Union[Tuple, CoEncoderCausalLMOutputWithPast]`: A tuple containing various model outputs or a `CoEncoderCausalLMOutputWithPast` instance.
|
503 |
+
"""
|
504 |
+
|
505 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
506 |
+
output_hidden_states = (
|
507 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
508 |
+
)
|
509 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
510 |
+
|
511 |
+
# Process context input through ContextTower
|
512 |
+
if context_input_ids is not None:
|
513 |
+
context_features = self.context_tower(context_input_ids)
|
514 |
+
context_features, context_attention_mask = self.connector(context_features)
|
515 |
+
else:
|
516 |
+
context_features = None
|
517 |
+
context_attention_mask = None
|
518 |
+
|
519 |
+
if inputs_embeds is None:
|
520 |
+
inputs_embeds = self.get_input_embeddings()(input_ids)
|
521 |
+
|
522 |
+
if context_features is not None:
|
523 |
+
inputs_embeds, attention_mask, position_ids, labels = self._merge_context_features(
|
524 |
+
context_features,
|
525 |
+
inputs_embeds,
|
526 |
+
input_ids,
|
527 |
+
attention_mask,
|
528 |
+
position_ids,
|
529 |
+
labels,
|
530 |
+
context_attention_mask=context_attention_mask,
|
531 |
+
)
|
532 |
+
|
533 |
+
outputs = self.language_model(
|
534 |
+
attention_mask=attention_mask,
|
535 |
+
position_ids=position_ids,
|
536 |
+
past_key_values=past_key_values,
|
537 |
+
inputs_embeds=inputs_embeds,
|
538 |
+
use_cache=use_cache,
|
539 |
+
output_attentions=output_attentions,
|
540 |
+
output_hidden_states=output_hidden_states,
|
541 |
+
return_dict=return_dict,
|
542 |
+
)
|
543 |
+
|
544 |
+
logits = outputs[0]
|
545 |
+
|
546 |
+
loss = None
|
547 |
+
if labels is not None:
|
548 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
549 |
+
shift_labels = labels[..., 1:].contiguous()
|
550 |
+
loss_fct = nn.CrossEntropyLoss(ignore_index=self.ignore_index)
|
551 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
552 |
+
|
553 |
+
if not return_dict:
|
554 |
+
output = (logits,) + outputs[1:]
|
555 |
+
return (loss,) + output if loss is not None else output
|
556 |
+
|
557 |
+
return CoEncoderCausalLMOutputWithPast(
|
558 |
+
loss=loss,
|
559 |
+
logits=logits,
|
560 |
+
past_key_values=outputs.past_key_values,
|
561 |
+
hidden_states=outputs.hidden_states,
|
562 |
+
attentions=outputs.attentions,
|
563 |
+
context_hidden_states=context_features,
|
564 |
+
)
|
565 |
+
|
566 |
+
def prepare_inputs_for_generation(
|
567 |
+
self,
|
568 |
+
input_ids,
|
569 |
+
past_key_values=None,
|
570 |
+
attention_mask=None,
|
571 |
+
inputs_embeds=None,
|
572 |
+
context_features=None,
|
573 |
+
**kwargs
|
574 |
+
):
|
575 |
+
if past_key_values:
|
576 |
+
input_ids = input_ids[:, -1:]
|
577 |
+
|
578 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
579 |
+
if inputs_embeds is not None and past_key_values is None:
|
580 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
581 |
+
else:
|
582 |
+
model_inputs = {"input_ids": input_ids}
|
583 |
+
|
584 |
+
model_inputs.update(
|
585 |
+
{
|
586 |
+
"past_key_values": past_key_values,
|
587 |
+
"use_cache": kwargs.get("use_cache"),
|
588 |
+
"attention_mask": attention_mask,
|
589 |
+
"context_features": context_features,
|
590 |
+
}
|
591 |
+
)
|
592 |
+
return model_inputs
|
tokenization_co_encoder.py
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
"""Tokenization classes for CoEncoder"""
|
3 |
+
|
4 |
+
from typing import List, Union, Optional
|
5 |
+
from transformers import AutoTokenizer
|
6 |
+
from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack
|
7 |
+
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
|
8 |
+
from transformers.utils import logging
|
9 |
+
from transformers.feature_extraction_utils import BatchFeature
|
10 |
+
|
11 |
+
logger = logging.get_logger(__name__)
|
12 |
+
|
13 |
+
|
14 |
+
class CoEncoderDualTokenizerKwargs(ProcessingKwargs, total=False):
|
15 |
+
_defaults = {
|
16 |
+
"context_kwargs": {
|
17 |
+
"padding": False,
|
18 |
+
},
|
19 |
+
"text_kwargs": {
|
20 |
+
"padding": False,
|
21 |
+
},
|
22 |
+
}
|
23 |
+
|
24 |
+
|
25 |
+
class CoEncoderDualTokenizer(ProcessorMixin):
|
26 |
+
r"""
|
27 |
+
CoEncoderDualTokenizer is tokenizer for the CoEncoder model. It processes context and main text.
|
28 |
+
|
29 |
+
Args:
|
30 |
+
context_tokenizer ([`PreTrainedTokenizer`]):
|
31 |
+
The tokenizer for context.
|
32 |
+
text_tokenizer ([`PreTrainedTokenizer`]):
|
33 |
+
The tokenizer for main text.
|
34 |
+
"""
|
35 |
+
|
36 |
+
attributes = ["context_tokenizer", "text_tokenizer"]
|
37 |
+
context_tokenizer_class = "AutoTokenizer"
|
38 |
+
text_tokenizer_class = "AutoTokenizer"
|
39 |
+
|
40 |
+
def __init__(self, context_tokenizer=None, text_tokenizer=None):
|
41 |
+
super().__init__(context_tokenizer, text_tokenizer)
|
42 |
+
|
43 |
+
@classmethod
|
44 |
+
def from_pretrained(cls, pretrained_model_name_or_path: str, **kwargs):
|
45 |
+
"""
|
46 |
+
Load both context and text tokenizers from a given repository.
|
47 |
+
|
48 |
+
Args:
|
49 |
+
pretrained_model_name_or_path (str): The name or path of the Hugging Face repository.
|
50 |
+
|
51 |
+
Returns:
|
52 |
+
CoEncoderDualTokenizer: An instance of the tokenizer class.
|
53 |
+
"""
|
54 |
+
# Load context_tokenizer from 'context_tokenizer' directory
|
55 |
+
context_tokenizer = AutoTokenizer.from_pretrained(f"{pretrained_model_name_or_path}/context_tokenizer", **kwargs)
|
56 |
+
|
57 |
+
# Load text_tokenizer from 'text_tokenizer' directory
|
58 |
+
text_tokenizer = AutoTokenizer.from_pretrained(f"{pretrained_model_name_or_path}/text_tokenizer", **kwargs)
|
59 |
+
|
60 |
+
# Return a new instance of CoEncoderDualTokenizer with both tokenizers loaded
|
61 |
+
return cls(context_tokenizer=context_tokenizer, text_tokenizer=text_tokenizer)
|
62 |
+
|
63 |
+
def __call__(
|
64 |
+
self,
|
65 |
+
context: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
66 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
67 |
+
return_tensors: Optional[str] = None,
|
68 |
+
**kwargs: Unpack[CoEncoderDualTokenizerKwargs]
|
69 |
+
) -> BatchFeature:
|
70 |
+
"""
|
71 |
+
Main method to prepare inputs for the CoEncoder model.
|
72 |
+
|
73 |
+
Args:
|
74 |
+
context: Context text input.
|
75 |
+
text: Main text input.
|
76 |
+
return_tensors: Type of tensors to return.
|
77 |
+
|
78 |
+
Returns:
|
79 |
+
BatchFeature: A BatchFeature object containing model inputs.
|
80 |
+
"""
|
81 |
+
if context is None and text is None:
|
82 |
+
raise ValueError("You must provide either context or text.")
|
83 |
+
|
84 |
+
features = {}
|
85 |
+
|
86 |
+
if context is not None:
|
87 |
+
context_features = self.context_tokenizer(
|
88 |
+
context,
|
89 |
+
return_tensors=return_tensors,
|
90 |
+
**kwargs.get("context_kwargs", {})
|
91 |
+
)
|
92 |
+
features.update({f"context_{k}": v for k, v in context_features.items()})
|
93 |
+
|
94 |
+
if text is not None:
|
95 |
+
text_features = self.text_tokenizer(
|
96 |
+
text,
|
97 |
+
return_tensors=return_tensors,
|
98 |
+
**kwargs.get("text_kwargs", {})
|
99 |
+
)
|
100 |
+
features.update({k: v for k, v in text_features.items()})
|
101 |
+
|
102 |
+
return BatchFeature(data=features, tensor_type=return_tensors)
|
103 |
+
|
104 |
+
def pad(
|
105 |
+
self,
|
106 |
+
encoded_inputs,
|
107 |
+
padding=True,
|
108 |
+
max_length=None,
|
109 |
+
return_tensors=None,
|
110 |
+
**kwargs
|
111 |
+
):
|
112 |
+
"""
|
113 |
+
Pads the encoded inputs to the maximum length in the batch.
|
114 |
+
|
115 |
+
Args:
|
116 |
+
encoded_inputs: A list of dictionaries containing context and text features.
|
117 |
+
padding: Whether to pad sequences.
|
118 |
+
max_length: Maximum length for padding.
|
119 |
+
return_tensors: Type of tensors to return.
|
120 |
+
|
121 |
+
Returns:
|
122 |
+
A dictionary with padded sequences.
|
123 |
+
"""
|
124 |
+
# Separate context and text features
|
125 |
+
context_features = []
|
126 |
+
text_features = []
|
127 |
+
|
128 |
+
for feature in encoded_inputs:
|
129 |
+
# Extract context features
|
130 |
+
context_feature = {
|
131 |
+
k[len("context_"):]: v
|
132 |
+
for k, v in feature.items()
|
133 |
+
if k.startswith("context_")
|
134 |
+
}
|
135 |
+
if context_feature:
|
136 |
+
context_features.append(context_feature)
|
137 |
+
# Extract text features
|
138 |
+
text_feature = {
|
139 |
+
k[len("input_"):]: v
|
140 |
+
for k, v in feature.items()
|
141 |
+
if k.startswith("input_")
|
142 |
+
}
|
143 |
+
if text_feature:
|
144 |
+
text_features.append(text_feature)
|
145 |
+
|
146 |
+
# Pad context features
|
147 |
+
if context_features:
|
148 |
+
context_padded = self.context_tokenizer.pad(
|
149 |
+
context_features,
|
150 |
+
padding=padding,
|
151 |
+
max_length=max_length,
|
152 |
+
return_tensors=return_tensors,
|
153 |
+
**kwargs.get("context_kwargs", {})
|
154 |
+
)
|
155 |
+
context_padded = {f"context_{k}": v for k, v in context_padded.items()}
|
156 |
+
else:
|
157 |
+
context_padded = {}
|
158 |
+
|
159 |
+
# Pad text features
|
160 |
+
if text_features:
|
161 |
+
text_padded = self.text_tokenizer.pad(
|
162 |
+
text_features,
|
163 |
+
padding=padding,
|
164 |
+
max_length=max_length,
|
165 |
+
return_tensors=return_tensors,
|
166 |
+
**kwargs.get("text_kwargs", {})
|
167 |
+
)
|
168 |
+
text_padded = {k: v for k, v in text_padded.items()}
|
169 |
+
else:
|
170 |
+
text_padded = {}
|
171 |
+
|
172 |
+
# Combine padded features
|
173 |
+
padded_features = {**context_padded, **text_padded}
|
174 |
+
|
175 |
+
return BatchFeature(data=padded_features, tensor_type=return_tensors)
|
176 |
+
|
177 |
+
def batch_decode(self, *args, **kwargs):
|
178 |
+
"""
|
179 |
+
Calls the batch_decode method of the text_tokenizer.
|
180 |
+
"""
|
181 |
+
return self.text_tokenizer.batch_decode(*args, **kwargs)
|
182 |
+
|
183 |
+
def decode(self, *args, **kwargs):
|
184 |
+
"""
|
185 |
+
Calls the decode method of the text_tokenizer.
|
186 |
+
"""
|
187 |
+
return self.text_tokenizer.decode(*args, **kwargs)
|
188 |
+
|
189 |
+
@property
|
190 |
+
def model_input_names(self):
|
191 |
+
"""
|
192 |
+
Returns the model input names.
|
193 |
+
"""
|
194 |
+
return list(dict.fromkeys(self.context_tokenizer.model_input_names + self.text_tokenizer.model_input_names))
|