Upload train.ipynb with huggingface_hub
Browse files- train.ipynb +1741 -0
train.ipynb
ADDED
@@ -0,0 +1,1741 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "9c3e4532",
|
6 |
+
"metadata": {
|
7 |
+
"papermill": {
|
8 |
+
"duration": 0.941841,
|
9 |
+
"end_time": "2023-10-22T00:33:18.570079",
|
10 |
+
"exception": false,
|
11 |
+
"start_time": "2023-10-22T00:33:17.628238",
|
12 |
+
"status": "completed"
|
13 |
+
},
|
14 |
+
"tags": []
|
15 |
+
},
|
16 |
+
"source": [
|
17 |
+
"# Train models using HuggingFace libraries\n",
|
18 |
+
"\n",
|
19 |
+
"This notebook takes parameters from a params.json file which is automatically\n",
|
20 |
+
"created by Substratus K8s operator.\n",
|
21 |
+
"\n",
|
22 |
+
"The following parameters influence what happens in this notebook:\n",
|
23 |
+
"- `dataset_urls`: A comma separated list of URLs. The URLs should point to\n",
|
24 |
+
" json files that contain your training dataset. If unset a json or jsonl\n",
|
25 |
+
" file should be present under the `/content/data/` directory.\n",
|
26 |
+
"- `prompt_template`: The prompt template to use for training\n",
|
27 |
+
"- `push_to_hub`: if this variable is set a repo id, then the trained\n",
|
28 |
+
" model will get pushed to HuggingFace hub. For example,\n",
|
29 |
+
" set it to \"substratusai/my-model\" to publish to substratusai HF org."
|
30 |
+
]
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"cell_type": "code",
|
34 |
+
"execution_count": 1,
|
35 |
+
"id": "86ccd646",
|
36 |
+
"metadata": {
|
37 |
+
"execution": {
|
38 |
+
"iopub.execute_input": "2023-10-22T00:33:20.446183Z",
|
39 |
+
"iopub.status.busy": "2023-10-22T00:33:20.445407Z",
|
40 |
+
"iopub.status.idle": "2023-10-22T00:33:20.458365Z",
|
41 |
+
"shell.execute_reply": "2023-10-22T00:33:20.457645Z"
|
42 |
+
},
|
43 |
+
"papermill": {
|
44 |
+
"duration": 0.922166,
|
45 |
+
"end_time": "2023-10-22T00:33:20.459935",
|
46 |
+
"exception": false,
|
47 |
+
"start_time": "2023-10-22T00:33:19.537769",
|
48 |
+
"status": "completed"
|
49 |
+
},
|
50 |
+
"tags": []
|
51 |
+
},
|
52 |
+
"outputs": [
|
53 |
+
{
|
54 |
+
"data": {
|
55 |
+
"text/plain": [
|
56 |
+
"{'dataset_urls': 'https://huggingface.co/datasets/weaviate/WithRetrieval-Random-Train-80/resolve/main/WithRetrieval-Random-Train-80.json',\n",
|
57 |
+
" 'inference_prompt_template': '## Instruction\\nYour task is to write GraphQL for the Natural Language Query provided. Use the provided API reference and Schema to generate the GraphQL. The GraphQL should be valid for Weaviate.\\n\\nOnly use the API reference to understand the syntax of the request.\\n\\n## Natural Language Query\\n{nlcommand}\\n\\n## Schema\\n{schema}\\n\\n## API reference\\n{apiRef}\\n\\n## Answer\\n```graphql\\n',\n",
|
58 |
+
" 'logging_steps': 50,\n",
|
59 |
+
" 'modules_to_save': 'embed_tokens, lm_head',\n",
|
60 |
+
" 'num_train_epochs': 3,\n",
|
61 |
+
" 'per_device_eval_batch_size': 1,\n",
|
62 |
+
" 'per_device_train_batch_size': 1,\n",
|
63 |
+
" 'prompt_template': '## Instruction\\nYour task is to write GraphQL for the Natural Language Query provided. Use the provided API reference and Schema to generate the GraphQL. The GraphQL should be valid for Weaviate.\\n\\nOnly use the API reference to understand the syntax of the request.\\n\\n## Natural Language Query\\n{nlcommand}\\n\\n## Schema\\n{schema}\\n\\n## API reference\\n{apiRef}\\n\\n## Answer\\n{output}\\n',\n",
|
64 |
+
" 'push_to_hub': 'substratusai/wgql-WithRetrieval-Random-Train-80',\n",
|
65 |
+
" 'save_steps': 50,\n",
|
66 |
+
" 'target_modules': 'q_proj, up_proj, o_proj, k_proj, down_proj, gate_proj, v_proj',\n",
|
67 |
+
" 'warmup_steps': 100}"
|
68 |
+
]
|
69 |
+
},
|
70 |
+
"execution_count": 1,
|
71 |
+
"metadata": {},
|
72 |
+
"output_type": "execute_result"
|
73 |
+
}
|
74 |
+
],
|
75 |
+
"source": [
|
76 |
+
"import json\n",
|
77 |
+
"from pathlib import Path\n",
|
78 |
+
"\n",
|
79 |
+
"params = {}\n",
|
80 |
+
"params_path = Path(\"/content/params.json\")\n",
|
81 |
+
"if params_path.is_file():\n",
|
82 |
+
" with params_path.open(\"r\", encoding=\"UTF-8\") as params_file:\n",
|
83 |
+
" params = json.load(params_file)\n",
|
84 |
+
"\n",
|
85 |
+
"\n",
|
86 |
+
"params"
|
87 |
+
]
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"cell_type": "code",
|
91 |
+
"execution_count": 2,
|
92 |
+
"id": "9fafd16b-d8c9-47bf-9116-c27b1d43a019",
|
93 |
+
"metadata": {
|
94 |
+
"execution": {
|
95 |
+
"iopub.execute_input": "2023-10-22T00:33:22.506977Z",
|
96 |
+
"iopub.status.busy": "2023-10-22T00:33:22.506580Z",
|
97 |
+
"iopub.status.idle": "2023-10-22T00:33:25.872338Z",
|
98 |
+
"shell.execute_reply": "2023-10-22T00:33:25.871610Z"
|
99 |
+
},
|
100 |
+
"papermill": {
|
101 |
+
"duration": 4.499567,
|
102 |
+
"end_time": "2023-10-22T00:33:25.873924",
|
103 |
+
"exception": false,
|
104 |
+
"start_time": "2023-10-22T00:33:21.374357",
|
105 |
+
"status": "completed"
|
106 |
+
},
|
107 |
+
"tags": []
|
108 |
+
},
|
109 |
+
"outputs": [
|
110 |
+
{
|
111 |
+
"name": "stdout",
|
112 |
+
"output_type": "stream",
|
113 |
+
"text": [
|
114 |
+
"Using the following URLs for the dataset: ['https://huggingface.co/datasets/weaviate/WithRetrieval-Random-Train-80/resolve/main/WithRetrieval-Random-Train-80.json']\n"
|
115 |
+
]
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"data": {
|
119 |
+
"application/vnd.jupyter.widget-view+json": {
|
120 |
+
"model_id": "54ab7cdf53f047abbc1942959916933d",
|
121 |
+
"version_major": 2,
|
122 |
+
"version_minor": 0
|
123 |
+
},
|
124 |
+
"text/plain": [
|
125 |
+
"Downloading data files: 0%| | 0/1 [00:00<?, ?it/s]"
|
126 |
+
]
|
127 |
+
},
|
128 |
+
"metadata": {},
|
129 |
+
"output_type": "display_data"
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"data": {
|
133 |
+
"application/vnd.jupyter.widget-view+json": {
|
134 |
+
"model_id": "4968d1b11acf4422acba4770dba3de9e",
|
135 |
+
"version_major": 2,
|
136 |
+
"version_minor": 0
|
137 |
+
},
|
138 |
+
"text/plain": [
|
139 |
+
"Downloading data: 0%| | 0.00/18.2M [00:00<?, ?B/s]"
|
140 |
+
]
|
141 |
+
},
|
142 |
+
"metadata": {},
|
143 |
+
"output_type": "display_data"
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"data": {
|
147 |
+
"application/vnd.jupyter.widget-view+json": {
|
148 |
+
"model_id": "7020c45b6867427cb4ed9890f1e043c0",
|
149 |
+
"version_major": 2,
|
150 |
+
"version_minor": 0
|
151 |
+
},
|
152 |
+
"text/plain": [
|
153 |
+
"Extracting data files: 0%| | 0/1 [00:00<?, ?it/s]"
|
154 |
+
]
|
155 |
+
},
|
156 |
+
"metadata": {},
|
157 |
+
"output_type": "display_data"
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"data": {
|
161 |
+
"application/vnd.jupyter.widget-view+json": {
|
162 |
+
"model_id": "75cbf6ed8b2844cc896d35ee9abd7a36",
|
163 |
+
"version_major": 2,
|
164 |
+
"version_minor": 0
|
165 |
+
},
|
166 |
+
"text/plain": [
|
167 |
+
"Generating train split: 0 examples [00:00, ? examples/s]"
|
168 |
+
]
|
169 |
+
},
|
170 |
+
"metadata": {},
|
171 |
+
"output_type": "display_data"
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"data": {
|
175 |
+
"text/plain": [
|
176 |
+
"DatasetDict({\n",
|
177 |
+
" train: Dataset({\n",
|
178 |
+
" features: ['input', 'output', 'nlcommand', 'apiRef', 'apiRefPath', 'schema', 'schemaPath'],\n",
|
179 |
+
" num_rows: 3190\n",
|
180 |
+
" })\n",
|
181 |
+
"})"
|
182 |
+
]
|
183 |
+
},
|
184 |
+
"execution_count": 2,
|
185 |
+
"metadata": {},
|
186 |
+
"output_type": "execute_result"
|
187 |
+
}
|
188 |
+
],
|
189 |
+
"source": [
|
190 |
+
"import os \n",
|
191 |
+
"from datasets import load_dataset\n",
|
192 |
+
"\n",
|
193 |
+
"dataset_urls = params.get(\"dataset_urls\")\n",
|
194 |
+
"if dataset_urls:\n",
|
195 |
+
" urls = [u.strip() for u in dataset_urls.split(\",\")]\n",
|
196 |
+
" print(f\"Using the following URLs for the dataset: {urls}\")\n",
|
197 |
+
" data = load_dataset(\"json\", data_files=urls)\n",
|
198 |
+
"else:\n",
|
199 |
+
" data = load_dataset(\"json\", data_files=\"/content/data/*.json*\")\n",
|
200 |
+
"data"
|
201 |
+
]
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"cell_type": "code",
|
205 |
+
"execution_count": 3,
|
206 |
+
"id": "08e478fa-d095-4145-9bd1-b4feec7bc4f0",
|
207 |
+
"metadata": {
|
208 |
+
"execution": {
|
209 |
+
"iopub.execute_input": "2023-10-22T00:33:27.705007Z",
|
210 |
+
"iopub.status.busy": "2023-10-22T00:33:27.704156Z",
|
211 |
+
"iopub.status.idle": "2023-10-22T00:37:47.218387Z",
|
212 |
+
"shell.execute_reply": "2023-10-22T00:37:47.217711Z"
|
213 |
+
},
|
214 |
+
"papermill": {
|
215 |
+
"duration": 261.366899,
|
216 |
+
"end_time": "2023-10-22T00:37:48.179776",
|
217 |
+
"exception": false,
|
218 |
+
"start_time": "2023-10-22T00:33:26.812877",
|
219 |
+
"status": "completed"
|
220 |
+
},
|
221 |
+
"tags": []
|
222 |
+
},
|
223 |
+
"outputs": [
|
224 |
+
{
|
225 |
+
"data": {
|
226 |
+
"application/vnd.jupyter.widget-view+json": {
|
227 |
+
"model_id": "f129585f22ba4d51a8f53545a1c8154b",
|
228 |
+
"version_major": 2,
|
229 |
+
"version_minor": 0
|
230 |
+
},
|
231 |
+
"text/plain": [
|
232 |
+
"Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]"
|
233 |
+
]
|
234 |
+
},
|
235 |
+
"metadata": {},
|
236 |
+
"output_type": "display_data"
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"data": {
|
240 |
+
"text/plain": [
|
241 |
+
"LlamaForCausalLM(\n",
|
242 |
+
" (model): LlamaModel(\n",
|
243 |
+
" (embed_tokens): Embedding(32000, 4096)\n",
|
244 |
+
" (layers): ModuleList(\n",
|
245 |
+
" (0-31): 32 x LlamaDecoderLayer(\n",
|
246 |
+
" (self_attn): LlamaAttention(\n",
|
247 |
+
" (q_proj): Linear(in_features=4096, out_features=4096, bias=False)\n",
|
248 |
+
" (k_proj): Linear(in_features=4096, out_features=4096, bias=False)\n",
|
249 |
+
" (v_proj): Linear(in_features=4096, out_features=4096, bias=False)\n",
|
250 |
+
" (o_proj): Linear(in_features=4096, out_features=4096, bias=False)\n",
|
251 |
+
" (rotary_emb): LlamaRotaryEmbedding()\n",
|
252 |
+
" )\n",
|
253 |
+
" (mlp): LlamaMLP(\n",
|
254 |
+
" (gate_proj): Linear(in_features=4096, out_features=11008, bias=False)\n",
|
255 |
+
" (up_proj): Linear(in_features=4096, out_features=11008, bias=False)\n",
|
256 |
+
" (down_proj): Linear(in_features=11008, out_features=4096, bias=False)\n",
|
257 |
+
" (act_fn): SiLUActivation()\n",
|
258 |
+
" )\n",
|
259 |
+
" (input_layernorm): LlamaRMSNorm()\n",
|
260 |
+
" (post_attention_layernorm): LlamaRMSNorm()\n",
|
261 |
+
" )\n",
|
262 |
+
" )\n",
|
263 |
+
" (norm): LlamaRMSNorm()\n",
|
264 |
+
" )\n",
|
265 |
+
" (lm_head): Linear(in_features=4096, out_features=32000, bias=False)\n",
|
266 |
+
")"
|
267 |
+
]
|
268 |
+
},
|
269 |
+
"execution_count": 3,
|
270 |
+
"metadata": {},
|
271 |
+
"output_type": "execute_result"
|
272 |
+
}
|
273 |
+
],
|
274 |
+
"source": [
|
275 |
+
"import transformers\n",
|
276 |
+
"import torch\n",
|
277 |
+
"import sys\n",
|
278 |
+
"from transformers import AutoTokenizer, AutoModelForCausalLM\n",
|
279 |
+
"\n",
|
280 |
+
"model_path = \"/content/model/\"\n",
|
281 |
+
"trained_model_path = \"/content/artifacts\"\n",
|
282 |
+
"trained_model_path_lora = \"/content/artifacts/lora\"\n",
|
283 |
+
"\n",
|
284 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_path,\n",
|
285 |
+
" local_files_only=True)\n",
|
286 |
+
"model = AutoModelForCausalLM.from_pretrained(\n",
|
287 |
+
" model_path, torch_dtype=torch.float16, device_map=\"auto\", trust_remote_code=True)\n",
|
288 |
+
"model"
|
289 |
+
]
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"cell_type": "code",
|
293 |
+
"execution_count": 4,
|
294 |
+
"id": "88908150-1585-4781-9542-d68193d808bc",
|
295 |
+
"metadata": {
|
296 |
+
"execution": {
|
297 |
+
"iopub.execute_input": "2023-10-22T00:37:50.062611Z",
|
298 |
+
"iopub.status.busy": "2023-10-22T00:37:50.061711Z",
|
299 |
+
"iopub.status.idle": "2023-10-22T00:37:50.067405Z",
|
300 |
+
"shell.execute_reply": "2023-10-22T00:37:50.066788Z"
|
301 |
+
},
|
302 |
+
"papermill": {
|
303 |
+
"duration": 0.983273,
|
304 |
+
"end_time": "2023-10-22T00:37:50.068938",
|
305 |
+
"exception": false,
|
306 |
+
"start_time": "2023-10-22T00:37:49.085665",
|
307 |
+
"status": "completed"
|
308 |
+
},
|
309 |
+
"tags": []
|
310 |
+
},
|
311 |
+
"outputs": [
|
312 |
+
{
|
313 |
+
"data": {
|
314 |
+
"text/plain": [
|
315 |
+
"LlamaConfig {\n",
|
316 |
+
" \"_name_or_path\": \"/content/model/\",\n",
|
317 |
+
" \"architectures\": [\n",
|
318 |
+
" \"LlamaForCausalLM\"\n",
|
319 |
+
" ],\n",
|
320 |
+
" \"attention_bias\": false,\n",
|
321 |
+
" \"bos_token_id\": 1,\n",
|
322 |
+
" \"eos_token_id\": 2,\n",
|
323 |
+
" \"hidden_act\": \"silu\",\n",
|
324 |
+
" \"hidden_size\": 4096,\n",
|
325 |
+
" \"initializer_range\": 0.02,\n",
|
326 |
+
" \"intermediate_size\": 11008,\n",
|
327 |
+
" \"max_position_embeddings\": 4096,\n",
|
328 |
+
" \"model_type\": \"llama\",\n",
|
329 |
+
" \"num_attention_heads\": 32,\n",
|
330 |
+
" \"num_hidden_layers\": 32,\n",
|
331 |
+
" \"num_key_value_heads\": 32,\n",
|
332 |
+
" \"pretraining_tp\": 1,\n",
|
333 |
+
" \"rms_norm_eps\": 1e-05,\n",
|
334 |
+
" \"rope_scaling\": null,\n",
|
335 |
+
" \"rope_theta\": 10000.0,\n",
|
336 |
+
" \"tie_word_embeddings\": false,\n",
|
337 |
+
" \"torch_dtype\": \"float16\",\n",
|
338 |
+
" \"transformers_version\": \"4.34.1\",\n",
|
339 |
+
" \"use_cache\": true,\n",
|
340 |
+
" \"vocab_size\": 32000\n",
|
341 |
+
"}"
|
342 |
+
]
|
343 |
+
},
|
344 |
+
"execution_count": 4,
|
345 |
+
"metadata": {},
|
346 |
+
"output_type": "execute_result"
|
347 |
+
}
|
348 |
+
],
|
349 |
+
"source": [
|
350 |
+
"model.config"
|
351 |
+
]
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"cell_type": "code",
|
355 |
+
"execution_count": 5,
|
356 |
+
"id": "ec8a1a9f-fe60-49c7-ab20-04034323df8a",
|
357 |
+
"metadata": {
|
358 |
+
"execution": {
|
359 |
+
"iopub.execute_input": "2023-10-22T00:37:51.917719Z",
|
360 |
+
"iopub.status.busy": "2023-10-22T00:37:51.916981Z",
|
361 |
+
"iopub.status.idle": "2023-10-22T00:37:51.922095Z",
|
362 |
+
"shell.execute_reply": "2023-10-22T00:37:51.921472Z"
|
363 |
+
},
|
364 |
+
"papermill": {
|
365 |
+
"duration": 0.926289,
|
366 |
+
"end_time": "2023-10-22T00:37:51.923526",
|
367 |
+
"exception": false,
|
368 |
+
"start_time": "2023-10-22T00:37:50.997237",
|
369 |
+
"status": "completed"
|
370 |
+
},
|
371 |
+
"tags": []
|
372 |
+
},
|
373 |
+
"outputs": [
|
374 |
+
{
|
375 |
+
"name": "stdout",
|
376 |
+
"output_type": "stream",
|
377 |
+
"text": [
|
378 |
+
"## Instruction\n",
|
379 |
+
"Your task is to write GraphQL for the Natural Language Query provided. Use the provided API reference and Schema to generate the GraphQL. The GraphQL should be valid for Weaviate.\n",
|
380 |
+
"\n",
|
381 |
+
"Only use the API reference to understand the syntax of the request.\n",
|
382 |
+
"\n",
|
383 |
+
"## Natural Language Query\n",
|
384 |
+
"{nlcommand}\n",
|
385 |
+
"\n",
|
386 |
+
"## Schema\n",
|
387 |
+
"{schema}\n",
|
388 |
+
"\n",
|
389 |
+
"## API reference\n",
|
390 |
+
"{apiRef}\n",
|
391 |
+
"\n",
|
392 |
+
"## Answer\n",
|
393 |
+
"{output}\n",
|
394 |
+
"</s>\n"
|
395 |
+
]
|
396 |
+
}
|
397 |
+
],
|
398 |
+
"source": [
|
399 |
+
"default_prompt = \"\"\"\n",
|
400 |
+
"Below is an instruction that describes a task. Write a response that appropriately completes the request.\n",
|
401 |
+
"### Instruction:\n",
|
402 |
+
"{prompt}\n",
|
403 |
+
"### Response:\n",
|
404 |
+
"{completion}\n",
|
405 |
+
"\"\"\"\n",
|
406 |
+
"\n",
|
407 |
+
"prompt = params.get(\"prompt_template\", default_prompt)\n",
|
408 |
+
"\n",
|
409 |
+
"eos_token = tokenizer.convert_ids_to_tokens(model.config.eos_token_id)\n",
|
410 |
+
"if prompt[-len(eos_token):] != eos_token:\n",
|
411 |
+
" prompt = prompt + eos_token\n",
|
412 |
+
"\n",
|
413 |
+
"print(prompt)\n"
|
414 |
+
]
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"cell_type": "code",
|
418 |
+
"execution_count": 6,
|
419 |
+
"id": "0abf96e1-3bc1-4ae7-80ac-c2e585e9c7c1",
|
420 |
+
"metadata": {
|
421 |
+
"execution": {
|
422 |
+
"iopub.execute_input": "2023-10-22T00:37:55.546481Z",
|
423 |
+
"iopub.status.busy": "2023-10-22T00:37:55.545754Z",
|
424 |
+
"iopub.status.idle": "2023-10-22T00:37:56.401487Z",
|
425 |
+
"shell.execute_reply": "2023-10-22T00:37:56.400701Z"
|
426 |
+
},
|
427 |
+
"papermill": {
|
428 |
+
"duration": 1.720149,
|
429 |
+
"end_time": "2023-10-22T00:37:56.403253",
|
430 |
+
"exception": false,
|
431 |
+
"start_time": "2023-10-22T00:37:54.683104",
|
432 |
+
"status": "completed"
|
433 |
+
},
|
434 |
+
"tags": []
|
435 |
+
},
|
436 |
+
"outputs": [
|
437 |
+
{
|
438 |
+
"name": "stdout",
|
439 |
+
"output_type": "stream",
|
440 |
+
"text": [
|
441 |
+
"Sun Oct 22 00:37:55 2023 \r\n",
|
442 |
+
"+-----------------------------------------------------------------------------+\r\n",
|
443 |
+
"| NVIDIA-SMI 525.105.17 Driver Version: 525.105.17 CUDA Version: 12.0 |\r\n",
|
444 |
+
"|-------------------------------+----------------------+----------------------+\r\n",
|
445 |
+
"| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |\r\n",
|
446 |
+
"| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |\r\n",
|
447 |
+
"| | | MIG M. |\r\n",
|
448 |
+
"|===============================+======================+======================|\r\n",
|
449 |
+
"| 0 NVIDIA L4 Off | 00000000:00:04.0 Off | 0 |\r\n",
|
450 |
+
"| N/A 60C P0 31W / 72W | 3570MiB / 23034MiB | 0% Default |\r\n",
|
451 |
+
"| | | N/A |\r\n",
|
452 |
+
"+-------------------------------+----------------------+----------------------+\r\n",
|
453 |
+
"| 1 NVIDIA L4 Off | 00000000:00:05.0 Off | 0 |\r\n",
|
454 |
+
"| N/A 58C P0 30W / 72W | 4096MiB / 23034MiB | 0% Default |\r\n",
|
455 |
+
"| | | N/A |\r\n",
|
456 |
+
"+-------------------------------+----------------------+----------------------+\r\n"
|
457 |
+
]
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"name": "stdout",
|
461 |
+
"output_type": "stream",
|
462 |
+
"text": [
|
463 |
+
"| 2 NVIDIA L4 Off | 00000000:00:06.0 Off | 0 |\r\n",
|
464 |
+
"| N/A 56C P0 30W / 72W | 4096MiB / 23034MiB | 0% Default |\r\n",
|
465 |
+
"| | | N/A |\r\n",
|
466 |
+
"+-------------------------------+----------------------+----------------------+\r\n",
|
467 |
+
"| 3 NVIDIA L4 Off | 00000000:00:07.0 Off | 0 |\r\n",
|
468 |
+
"| N/A 60C P0 32W / 72W | 3570MiB / 23034MiB | 0% Default |\r\n",
|
469 |
+
"| | | N/A |\r\n",
|
470 |
+
"+-------------------------------+----------------------+----------------------+\r\n",
|
471 |
+
" \r\n",
|
472 |
+
"+-----------------------------------------------------------------------------+\r\n",
|
473 |
+
"| Processes: |\r\n",
|
474 |
+
"| GPU GI CI PID Type Process name GPU Memory |\r\n",
|
475 |
+
"| ID ID Usage |\r\n",
|
476 |
+
"|=============================================================================|\r\n",
|
477 |
+
"+-----------------------------------------------------------------------------+\r\n"
|
478 |
+
]
|
479 |
+
}
|
480 |
+
],
|
481 |
+
"source": [
|
482 |
+
"! nvidia-smi"
|
483 |
+
]
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"attachments": {},
|
487 |
+
"cell_type": "markdown",
|
488 |
+
"id": "4d1e1795-c783-4ddf-999e-f1de19258928",
|
489 |
+
"metadata": {
|
490 |
+
"papermill": {
|
491 |
+
"duration": 1.050693,
|
492 |
+
"end_time": "2023-10-22T00:37:58.385886",
|
493 |
+
"exception": false,
|
494 |
+
"start_time": "2023-10-22T00:37:57.335193",
|
495 |
+
"status": "completed"
|
496 |
+
},
|
497 |
+
"tags": []
|
498 |
+
},
|
499 |
+
"source": [
|
500 |
+
"Prompt before fine tuning"
|
501 |
+
]
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"cell_type": "code",
|
505 |
+
"execution_count": 7,
|
506 |
+
"id": "f5dd944b-e2bd-4bfd-a5fa-55bc90239926",
|
507 |
+
"metadata": {
|
508 |
+
"execution": {
|
509 |
+
"iopub.execute_input": "2023-10-22T00:38:00.598168Z",
|
510 |
+
"iopub.status.busy": "2023-10-22T00:38:00.597836Z",
|
511 |
+
"iopub.status.idle": "2023-10-22T00:38:00.619438Z",
|
512 |
+
"shell.execute_reply": "2023-10-22T00:38:00.618759Z"
|
513 |
+
},
|
514 |
+
"papermill": {
|
515 |
+
"duration": 1.264362,
|
516 |
+
"end_time": "2023-10-22T00:38:00.620931",
|
517 |
+
"exception": false,
|
518 |
+
"start_time": "2023-10-22T00:37:59.356569",
|
519 |
+
"status": "completed"
|
520 |
+
},
|
521 |
+
"tags": []
|
522 |
+
},
|
523 |
+
"outputs": [
|
524 |
+
{
|
525 |
+
"data": {
|
526 |
+
"text/plain": [
|
527 |
+
"LlamaTokenizerFast(name_or_path='/content/model/', vocab_size=32000, model_max_length=1000000000000000019884624838656, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'bos_token': '<s>', 'eos_token': '</s>', 'unk_token': '<unk>', 'pad_token': '[PAD]'}, clean_up_tokenization_spaces=False), added_tokens_decoder={\n",
|
528 |
+
"\t0: AddedToken(\"<unk>\", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),\n",
|
529 |
+
"\t1: AddedToken(\"<s>\", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),\n",
|
530 |
+
"\t2: AddedToken(\"</s>\", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),\n",
|
531 |
+
"\t32000: AddedToken(\"[PAD]\", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),\n",
|
532 |
+
"}"
|
533 |
+
]
|
534 |
+
},
|
535 |
+
"execution_count": 7,
|
536 |
+
"metadata": {},
|
537 |
+
"output_type": "execute_result"
|
538 |
+
}
|
539 |
+
],
|
540 |
+
"source": [
|
541 |
+
"from typing import Dict\n",
|
542 |
+
"# source: https://github.com/artidoro/qlora\n",
|
543 |
+
"DEFAULT_PAD_TOKEN = params.get(\"pad_token\", \"[PAD]\")\n",
|
544 |
+
"\n",
|
545 |
+
"def smart_tokenizer_and_embedding_resize(\n",
|
546 |
+
" special_tokens_dict: Dict,\n",
|
547 |
+
" tokenizer: transformers.PreTrainedTokenizer,\n",
|
548 |
+
" model: transformers.PreTrainedModel,\n",
|
549 |
+
"):\n",
|
550 |
+
" \"\"\"Resize tokenizer and embedding.\n",
|
551 |
+
"\n",
|
552 |
+
" Note: This is the unoptimized version that may make your embedding size not be divisible by 64.\n",
|
553 |
+
" \"\"\"\n",
|
554 |
+
" num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict)\n",
|
555 |
+
" model.resize_token_embeddings(len(tokenizer))\n",
|
556 |
+
" if num_new_tokens > 0:\n",
|
557 |
+
" input_embeddings_data = model.get_input_embeddings().weight.data\n",
|
558 |
+
" output_embeddings_data = model.get_output_embeddings().weight.data\n",
|
559 |
+
"\n",
|
560 |
+
" input_embeddings_avg = input_embeddings_data[:-num_new_tokens].mean(dim=0, keepdim=True)\n",
|
561 |
+
" output_embeddings_avg = output_embeddings_data[:-num_new_tokens].mean(dim=0, keepdim=True)\n",
|
562 |
+
"\n",
|
563 |
+
" input_embeddings_data[-num_new_tokens:] = input_embeddings_avg\n",
|
564 |
+
" output_embeddings_data[-num_new_tokens:] = output_embeddings_avg\n",
|
565 |
+
"\n",
|
566 |
+
"if tokenizer._pad_token is None:\n",
|
567 |
+
" smart_tokenizer_and_embedding_resize(\n",
|
568 |
+
" special_tokens_dict=dict(pad_token=DEFAULT_PAD_TOKEN),\n",
|
569 |
+
" tokenizer=tokenizer,\n",
|
570 |
+
" model=model,\n",
|
571 |
+
" )\n",
|
572 |
+
"\n",
|
573 |
+
"if isinstance(tokenizer, transformers.LlamaTokenizer):\n",
|
574 |
+
" # LLaMA tokenizer may not have correct special tokens set.\n",
|
575 |
+
" # Check and add them if missing to prevent them from being parsed into different tokens.\n",
|
576 |
+
" # Note that these are present in the vocabulary.\n",
|
577 |
+
" # Note also that `model.config.pad_token_id` is 0 which corresponds to `<unk>` token.\n",
|
578 |
+
" print('Adding special tokens.')\n",
|
579 |
+
" tokenizer.add_special_tokens({\n",
|
580 |
+
" \"eos_token\": tokenizer.convert_ids_to_tokens(model.config.eos_token_id),\n",
|
581 |
+
" \"bos_token\": tokenizer.convert_ids_to_tokens(model.config.bos_token_id),\n",
|
582 |
+
" \"unk_token\": tokenizer.convert_ids_to_tokens(\n",
|
583 |
+
" model.config.pad_token_id if model.config.pad_token_id != -1 else tokenizer.pad_token_id\n",
|
584 |
+
" ),\n",
|
585 |
+
" })\n",
|
586 |
+
"\n",
|
587 |
+
"tokenizer"
|
588 |
+
]
|
589 |
+
},
|
590 |
+
{
|
591 |
+
"cell_type": "code",
|
592 |
+
"execution_count": 8,
|
593 |
+
"id": "e78b510d",
|
594 |
+
"metadata": {
|
595 |
+
"execution": {
|
596 |
+
"iopub.execute_input": "2023-10-22T00:38:04.767476Z",
|
597 |
+
"iopub.status.busy": "2023-10-22T00:38:04.766754Z",
|
598 |
+
"iopub.status.idle": "2023-10-22T00:38:11.742834Z",
|
599 |
+
"shell.execute_reply": "2023-10-22T00:38:11.742183Z"
|
600 |
+
},
|
601 |
+
"papermill": {
|
602 |
+
"duration": 7.967639,
|
603 |
+
"end_time": "2023-10-22T00:38:11.744550",
|
604 |
+
"exception": false,
|
605 |
+
"start_time": "2023-10-22T00:38:03.776911",
|
606 |
+
"status": "completed"
|
607 |
+
},
|
608 |
+
"tags": []
|
609 |
+
},
|
610 |
+
"outputs": [
|
611 |
+
{
|
612 |
+
"data": {
|
613 |
+
"application/vnd.jupyter.widget-view+json": {
|
614 |
+
"model_id": "360f10151af048819a1171718b9a9448",
|
615 |
+
"version_major": 2,
|
616 |
+
"version_minor": 0
|
617 |
+
},
|
618 |
+
"text/plain": [
|
619 |
+
"Map: 0%| | 0/3190 [00:00<?, ? examples/s]"
|
620 |
+
]
|
621 |
+
},
|
622 |
+
"metadata": {},
|
623 |
+
"output_type": "display_data"
|
624 |
+
},
|
625 |
+
{
|
626 |
+
"name": "stdout",
|
627 |
+
"output_type": "stream",
|
628 |
+
"text": [
|
629 |
+
"After tokenizing: DatasetDict({\n",
|
630 |
+
" train: Dataset({\n",
|
631 |
+
" features: ['input', 'output', 'nlcommand', 'apiRef', 'apiRefPath', 'schema', 'schemaPath', 'input_ids', 'attention_mask'],\n",
|
632 |
+
" num_rows: 3190\n",
|
633 |
+
" })\n",
|
634 |
+
"})\n"
|
635 |
+
]
|
636 |
+
}
|
637 |
+
],
|
638 |
+
"source": [
|
639 |
+
"from typing import Dict\n",
|
640 |
+
"\n",
|
641 |
+
"data = data.map(lambda x: tokenizer(prompt.format_map(x)))\n",
|
642 |
+
"\n",
|
643 |
+
"print(\"After tokenizing:\", data)"
|
644 |
+
]
|
645 |
+
},
|
646 |
+
{
|
647 |
+
"cell_type": "code",
|
648 |
+
"execution_count": 9,
|
649 |
+
"id": "5dae6c6f-3ae1-4697-852e-fce24a82b9e8",
|
650 |
+
"metadata": {
|
651 |
+
"execution": {
|
652 |
+
"iopub.execute_input": "2023-10-22T00:38:13.734857Z",
|
653 |
+
"iopub.status.busy": "2023-10-22T00:38:13.734113Z",
|
654 |
+
"iopub.status.idle": "2023-10-22T00:39:46.961024Z",
|
655 |
+
"shell.execute_reply": "2023-10-22T00:39:46.960315Z"
|
656 |
+
},
|
657 |
+
"papermill": {
|
658 |
+
"duration": 95.416685,
|
659 |
+
"end_time": "2023-10-22T00:39:48.174721",
|
660 |
+
"exception": false,
|
661 |
+
"start_time": "2023-10-22T00:38:12.758036",
|
662 |
+
"status": "completed"
|
663 |
+
},
|
664 |
+
"tags": []
|
665 |
+
},
|
666 |
+
"outputs": [
|
667 |
+
{
|
668 |
+
"name": "stdout",
|
669 |
+
"output_type": "stream",
|
670 |
+
"text": [
|
671 |
+
"LoraConfig(peft_type=<PeftType.LORA: 'LORA'>, auto_mapping=None, base_model_name_or_path=None, revision=None, task_type='CAUSAL_LM', inference_mode=False, r=16, target_modules=['q_proj', 'up_proj', 'o_proj', 'k_proj', 'down_proj', 'gate_proj', 'v_proj'], lora_alpha=16, lora_dropout=0.05, fan_in_fan_out=False, bias='none', modules_to_save=['embed_tokens', 'lm_head'], init_lora_weights=True, layers_to_transform=None, layers_pattern=None)\n"
|
672 |
+
]
|
673 |
+
},
|
674 |
+
{
|
675 |
+
"name": "stdout",
|
676 |
+
"output_type": "stream",
|
677 |
+
"text": [
|
678 |
+
"trainable params: 564,281,344 || all params: 7,040,552,960 || trainable%: 8.01473047935144\n"
|
679 |
+
]
|
680 |
+
}
|
681 |
+
],
|
682 |
+
"source": [
|
683 |
+
"from peft import get_peft_model, LoraConfig, prepare_model_for_kbit_training\n",
|
684 |
+
"\n",
|
685 |
+
"target_modules = params.get(\"target_modules\")\n",
|
686 |
+
"if target_modules:\n",
|
687 |
+
" target_modules = [mod.strip() for mod in target_modules.split(\",\")]\n",
|
688 |
+
"\n",
|
689 |
+
"modules_to_save = params.get(\"modules_to_save\")\n",
|
690 |
+
"if modules_to_save:\n",
|
691 |
+
" modules_to_save = [mod.strip() for mod in modules_to_save.split(\",\")]\n",
|
692 |
+
"\n",
|
693 |
+
"lora_config2 = LoraConfig(\n",
|
694 |
+
" r=16,\n",
|
695 |
+
" lora_alpha=16,\n",
|
696 |
+
" lora_dropout=0.05,\n",
|
697 |
+
" bias=\"none\",\n",
|
698 |
+
" task_type=\"CAUSAL_LM\",\n",
|
699 |
+
" target_modules=target_modules,\n",
|
700 |
+
" modules_to_save = modules_to_save\n",
|
701 |
+
")\n",
|
702 |
+
"print(lora_config2)\n",
|
703 |
+
"\n",
|
704 |
+
"model = prepare_model_for_kbit_training(model)\n",
|
705 |
+
"\n",
|
706 |
+
"# add LoRA adaptor\n",
|
707 |
+
"model = get_peft_model(model, lora_config2)\n",
|
708 |
+
"model.print_trainable_parameters()"
|
709 |
+
]
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"cell_type": "code",
|
713 |
+
"execution_count": 10,
|
714 |
+
"id": "70a3e36c-62cf-45aa-8f37-0db0e40857dc",
|
715 |
+
"metadata": {
|
716 |
+
"execution": {
|
717 |
+
"iopub.execute_input": "2023-10-22T00:39:50.107840Z",
|
718 |
+
"iopub.status.busy": "2023-10-22T00:39:50.106880Z",
|
719 |
+
"iopub.status.idle": "2023-10-22T00:39:50.125663Z",
|
720 |
+
"shell.execute_reply": "2023-10-22T00:39:50.125045Z"
|
721 |
+
},
|
722 |
+
"papermill": {
|
723 |
+
"duration": 0.989767,
|
724 |
+
"end_time": "2023-10-22T00:39:50.127644",
|
725 |
+
"exception": false,
|
726 |
+
"start_time": "2023-10-22T00:39:49.137877",
|
727 |
+
"status": "completed"
|
728 |
+
},
|
729 |
+
"tags": []
|
730 |
+
},
|
731 |
+
"outputs": [
|
732 |
+
{
|
733 |
+
"data": {
|
734 |
+
"text/plain": [
|
735 |
+
"TrainingArguments(\n",
|
736 |
+
"_n_gpu=4,\n",
|
737 |
+
"adafactor=False,\n",
|
738 |
+
"adam_beta1=0.9,\n",
|
739 |
+
"adam_beta2=0.999,\n",
|
740 |
+
"adam_epsilon=1e-08,\n",
|
741 |
+
"auto_find_batch_size=False,\n",
|
742 |
+
"bf16=False,\n",
|
743 |
+
"bf16_full_eval=False,\n",
|
744 |
+
"data_seed=None,\n",
|
745 |
+
"dataloader_drop_last=False,\n",
|
746 |
+
"dataloader_num_workers=0,\n",
|
747 |
+
"dataloader_pin_memory=True,\n",
|
748 |
+
"ddp_backend=None,\n",
|
749 |
+
"ddp_broadcast_buffers=None,\n",
|
750 |
+
"ddp_bucket_cap_mb=None,\n",
|
751 |
+
"ddp_find_unused_parameters=None,\n",
|
752 |
+
"ddp_timeout=1800,\n",
|
753 |
+
"debug=[],\n",
|
754 |
+
"deepspeed=None,\n",
|
755 |
+
"disable_tqdm=False,\n",
|
756 |
+
"dispatch_batches=None,\n",
|
757 |
+
"do_eval=False,\n",
|
758 |
+
"do_predict=False,\n",
|
759 |
+
"do_train=False,\n",
|
760 |
+
"eval_accumulation_steps=None,\n",
|
761 |
+
"eval_delay=0,\n",
|
762 |
+
"eval_steps=None,\n",
|
763 |
+
"evaluation_strategy=no,\n",
|
764 |
+
"fp16=True,\n",
|
765 |
+
"fp16_backend=auto,\n",
|
766 |
+
"fp16_full_eval=False,\n",
|
767 |
+
"fp16_opt_level=O1,\n",
|
768 |
+
"fsdp=[],\n",
|
769 |
+
"fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_grad_ckpt': False},\n",
|
770 |
+
"fsdp_min_num_params=0,\n",
|
771 |
+
"fsdp_transformer_layer_cls_to_wrap=None,\n",
|
772 |
+
"full_determinism=False,\n",
|
773 |
+
"gradient_accumulation_steps=4,\n",
|
774 |
+
"gradient_checkpointing=False,\n",
|
775 |
+
"greater_is_better=None,\n",
|
776 |
+
"group_by_length=False,\n",
|
777 |
+
"half_precision_backend=auto,\n",
|
778 |
+
"hub_always_push=False,\n",
|
779 |
+
"hub_model_id=None,\n",
|
780 |
+
"hub_private_repo=False,\n",
|
781 |
+
"hub_strategy=every_save,\n",
|
782 |
+
"hub_token=<HUB_TOKEN>,\n",
|
783 |
+
"ignore_data_skip=False,\n",
|
784 |
+
"include_inputs_for_metrics=False,\n",
|
785 |
+
"include_tokens_per_second=False,\n",
|
786 |
+
"jit_mode_eval=False,\n",
|
787 |
+
"label_names=None,\n",
|
788 |
+
"label_smoothing_factor=0.0,\n",
|
789 |
+
"learning_rate=3e-05,\n",
|
790 |
+
"length_column_name=length,\n",
|
791 |
+
"load_best_model_at_end=False,\n",
|
792 |
+
"local_rank=0,\n",
|
793 |
+
"log_level=passive,\n",
|
794 |
+
"log_level_replica=warning,\n",
|
795 |
+
"log_on_each_node=True,\n",
|
796 |
+
"logging_dir=/content/artifacts/checkpoints/runs/Oct22_00-39-50_wgqlg-withretrieval-random-train-80-v2-modeller-gdth6,\n",
|
797 |
+
"logging_first_step=False,\n",
|
798 |
+
"logging_nan_inf_filter=True,\n",
|
799 |
+
"logging_steps=50,\n",
|
800 |
+
"logging_strategy=steps,\n",
|
801 |
+
"lr_scheduler_type=cosine,\n",
|
802 |
+
"max_grad_norm=1.0,\n",
|
803 |
+
"max_steps=-1,\n",
|
804 |
+
"metric_for_best_model=None,\n",
|
805 |
+
"mp_parameters=,\n",
|
806 |
+
"no_cuda=False,\n",
|
807 |
+
"num_train_epochs=3.0,\n",
|
808 |
+
"optim=paged_adamw_32bit,\n",
|
809 |
+
"optim_args=None,\n",
|
810 |
+
"output_dir=/content/artifacts/checkpoints,\n",
|
811 |
+
"overwrite_output_dir=False,\n",
|
812 |
+
"past_index=-1,\n",
|
813 |
+
"per_device_eval_batch_size=1,\n",
|
814 |
+
"per_device_train_batch_size=1,\n",
|
815 |
+
"prediction_loss_only=False,\n",
|
816 |
+
"push_to_hub=False,\n",
|
817 |
+
"push_to_hub_model_id=None,\n",
|
818 |
+
"push_to_hub_organization=None,\n",
|
819 |
+
"push_to_hub_token=<PUSH_TO_HUB_TOKEN>,\n",
|
820 |
+
"ray_scope=last,\n",
|
821 |
+
"remove_unused_columns=True,\n",
|
822 |
+
"report_to=[],\n",
|
823 |
+
"resume_from_checkpoint=None,\n",
|
824 |
+
"run_name=/content/artifacts/checkpoints,\n",
|
825 |
+
"save_on_each_node=False,\n",
|
826 |
+
"save_safetensors=False,\n",
|
827 |
+
"save_steps=50,\n",
|
828 |
+
"save_strategy=steps,\n",
|
829 |
+
"save_total_limit=None,\n",
|
830 |
+
"seed=42,\n",
|
831 |
+
"sharded_ddp=[],\n",
|
832 |
+
"skip_memory_metrics=True,\n",
|
833 |
+
"tf32=None,\n",
|
834 |
+
"torch_compile=False,\n",
|
835 |
+
"torch_compile_backend=None,\n",
|
836 |
+
"torch_compile_mode=None,\n",
|
837 |
+
"torchdynamo=None,\n",
|
838 |
+
"tpu_metrics_debug=False,\n",
|
839 |
+
"tpu_num_cores=None,\n",
|
840 |
+
"use_cpu=False,\n",
|
841 |
+
"use_ipex=False,\n",
|
842 |
+
"use_legacy_prediction_loop=False,\n",
|
843 |
+
"use_mps_device=False,\n",
|
844 |
+
"warmup_ratio=0.02,\n",
|
845 |
+
"warmup_steps=100,\n",
|
846 |
+
"weight_decay=0.0,\n",
|
847 |
+
")"
|
848 |
+
]
|
849 |
+
},
|
850 |
+
"execution_count": 10,
|
851 |
+
"metadata": {},
|
852 |
+
"output_type": "execute_result"
|
853 |
+
}
|
854 |
+
],
|
855 |
+
"source": [
|
856 |
+
"from utils import parse_training_args\n",
|
857 |
+
"\n",
|
858 |
+
"training_args = parse_training_args(params)\n",
|
859 |
+
"training_args"
|
860 |
+
]
|
861 |
+
},
|
862 |
+
{
|
863 |
+
"cell_type": "code",
|
864 |
+
"execution_count": 11,
|
865 |
+
"id": "2ae3e5f9-e28e-457b-b6bf-a62a472241bf",
|
866 |
+
"metadata": {
|
867 |
+
"execution": {
|
868 |
+
"iopub.execute_input": "2023-10-22T00:39:52.733240Z",
|
869 |
+
"iopub.status.busy": "2023-10-22T00:39:52.732528Z",
|
870 |
+
"iopub.status.idle": "2023-10-22T00:39:52.735862Z",
|
871 |
+
"shell.execute_reply": "2023-10-22T00:39:52.735243Z"
|
872 |
+
},
|
873 |
+
"papermill": {
|
874 |
+
"duration": 1.548798,
|
875 |
+
"end_time": "2023-10-22T00:39:52.737292",
|
876 |
+
"exception": false,
|
877 |
+
"start_time": "2023-10-22T00:39:51.188494",
|
878 |
+
"status": "completed"
|
879 |
+
},
|
880 |
+
"tags": []
|
881 |
+
},
|
882 |
+
"outputs": [],
|
883 |
+
"source": [
|
884 |
+
"# data = data[\"train\"].train_test_split(test_size=0.1)\n",
|
885 |
+
"# data\n"
|
886 |
+
]
|
887 |
+
},
|
888 |
+
{
|
889 |
+
"cell_type": "code",
|
890 |
+
"execution_count": 12,
|
891 |
+
"id": "5bc91439-6108-445c-8f85-e6558c9f0677",
|
892 |
+
"metadata": {
|
893 |
+
"execution": {
|
894 |
+
"iopub.execute_input": "2023-10-22T00:39:54.811779Z",
|
895 |
+
"iopub.status.busy": "2023-10-22T00:39:54.811180Z",
|
896 |
+
"iopub.status.idle": "2023-10-22T00:39:55.100635Z",
|
897 |
+
"shell.execute_reply": "2023-10-22T00:39:55.099818Z"
|
898 |
+
},
|
899 |
+
"papermill": {
|
900 |
+
"duration": 1.304129,
|
901 |
+
"end_time": "2023-10-22T00:39:55.102252",
|
902 |
+
"exception": false,
|
903 |
+
"start_time": "2023-10-22T00:39:53.798123",
|
904 |
+
"status": "completed"
|
905 |
+
},
|
906 |
+
"tags": []
|
907 |
+
},
|
908 |
+
"outputs": [
|
909 |
+
{
|
910 |
+
"name": "stderr",
|
911 |
+
"output_type": "stream",
|
912 |
+
"text": [
|
913 |
+
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
|
914 |
+
"To disable this warning, you can either:\n",
|
915 |
+
"\t- Avoid using `tokenizers` before the fork if possible\n",
|
916 |
+
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
|
917 |
+
]
|
918 |
+
}
|
919 |
+
],
|
920 |
+
"source": [
|
921 |
+
"! mkdir -p {trained_model_path_lora}"
|
922 |
+
]
|
923 |
+
},
|
924 |
+
{
|
925 |
+
"cell_type": "code",
|
926 |
+
"execution_count": 13,
|
927 |
+
"id": "b33e407a-9d4f-49f6-a74b-b80db8cc3a8a",
|
928 |
+
"metadata": {
|
929 |
+
"execution": {
|
930 |
+
"iopub.execute_input": "2023-10-22T00:39:57.094945Z",
|
931 |
+
"iopub.status.busy": "2023-10-22T00:39:57.094146Z",
|
932 |
+
"iopub.status.idle": "2023-10-22T04:52:40.595862Z",
|
933 |
+
"shell.execute_reply": "2023-10-22T04:52:40.595167Z"
|
934 |
+
},
|
935 |
+
"papermill": {
|
936 |
+
"duration": 15165.144124,
|
937 |
+
"end_time": "2023-10-22T04:52:41.273343",
|
938 |
+
"exception": false,
|
939 |
+
"start_time": "2023-10-22T00:39:56.129219",
|
940 |
+
"status": "completed"
|
941 |
+
},
|
942 |
+
"tags": []
|
943 |
+
},
|
944 |
+
"outputs": [
|
945 |
+
{
|
946 |
+
"name": "stderr",
|
947 |
+
"output_type": "stream",
|
948 |
+
"text": [
|
949 |
+
"You're using a LlamaTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.\n"
|
950 |
+
]
|
951 |
+
},
|
952 |
+
{
|
953 |
+
"data": {
|
954 |
+
"text/html": [
|
955 |
+
"\n",
|
956 |
+
" <div>\n",
|
957 |
+
" \n",
|
958 |
+
" <progress value='2391' max='2391' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
959 |
+
" [2391/2391 4:12:34, Epoch 2/3]\n",
|
960 |
+
" </div>\n",
|
961 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
962 |
+
" <thead>\n",
|
963 |
+
" <tr style=\"text-align: left;\">\n",
|
964 |
+
" <th>Step</th>\n",
|
965 |
+
" <th>Training Loss</th>\n",
|
966 |
+
" </tr>\n",
|
967 |
+
" </thead>\n",
|
968 |
+
" <tbody>\n",
|
969 |
+
" <tr>\n",
|
970 |
+
" <td>50</td>\n",
|
971 |
+
" <td>1.069300</td>\n",
|
972 |
+
" </tr>\n",
|
973 |
+
" <tr>\n",
|
974 |
+
" <td>100</td>\n",
|
975 |
+
" <td>0.515300</td>\n",
|
976 |
+
" </tr>\n",
|
977 |
+
" <tr>\n",
|
978 |
+
" <td>150</td>\n",
|
979 |
+
" <td>0.273700</td>\n",
|
980 |
+
" </tr>\n",
|
981 |
+
" <tr>\n",
|
982 |
+
" <td>200</td>\n",
|
983 |
+
" <td>0.173300</td>\n",
|
984 |
+
" </tr>\n",
|
985 |
+
" <tr>\n",
|
986 |
+
" <td>250</td>\n",
|
987 |
+
" <td>0.118800</td>\n",
|
988 |
+
" </tr>\n",
|
989 |
+
" <tr>\n",
|
990 |
+
" <td>300</td>\n",
|
991 |
+
" <td>0.084200</td>\n",
|
992 |
+
" </tr>\n",
|
993 |
+
" <tr>\n",
|
994 |
+
" <td>350</td>\n",
|
995 |
+
" <td>0.065800</td>\n",
|
996 |
+
" </tr>\n",
|
997 |
+
" <tr>\n",
|
998 |
+
" <td>400</td>\n",
|
999 |
+
" <td>0.054500</td>\n",
|
1000 |
+
" </tr>\n",
|
1001 |
+
" <tr>\n",
|
1002 |
+
" <td>450</td>\n",
|
1003 |
+
" <td>0.048400</td>\n",
|
1004 |
+
" </tr>\n",
|
1005 |
+
" <tr>\n",
|
1006 |
+
" <td>500</td>\n",
|
1007 |
+
" <td>0.044200</td>\n",
|
1008 |
+
" </tr>\n",
|
1009 |
+
" <tr>\n",
|
1010 |
+
" <td>550</td>\n",
|
1011 |
+
" <td>0.040000</td>\n",
|
1012 |
+
" </tr>\n",
|
1013 |
+
" <tr>\n",
|
1014 |
+
" <td>600</td>\n",
|
1015 |
+
" <td>0.039400</td>\n",
|
1016 |
+
" </tr>\n",
|
1017 |
+
" <tr>\n",
|
1018 |
+
" <td>650</td>\n",
|
1019 |
+
" <td>0.038100</td>\n",
|
1020 |
+
" </tr>\n",
|
1021 |
+
" <tr>\n",
|
1022 |
+
" <td>700</td>\n",
|
1023 |
+
" <td>0.034100</td>\n",
|
1024 |
+
" </tr>\n",
|
1025 |
+
" <tr>\n",
|
1026 |
+
" <td>750</td>\n",
|
1027 |
+
" <td>0.034400</td>\n",
|
1028 |
+
" </tr>\n",
|
1029 |
+
" <tr>\n",
|
1030 |
+
" <td>800</td>\n",
|
1031 |
+
" <td>0.032600</td>\n",
|
1032 |
+
" </tr>\n",
|
1033 |
+
" <tr>\n",
|
1034 |
+
" <td>850</td>\n",
|
1035 |
+
" <td>0.027300</td>\n",
|
1036 |
+
" </tr>\n",
|
1037 |
+
" <tr>\n",
|
1038 |
+
" <td>900</td>\n",
|
1039 |
+
" <td>0.026700</td>\n",
|
1040 |
+
" </tr>\n",
|
1041 |
+
" <tr>\n",
|
1042 |
+
" <td>950</td>\n",
|
1043 |
+
" <td>0.027900</td>\n",
|
1044 |
+
" </tr>\n",
|
1045 |
+
" <tr>\n",
|
1046 |
+
" <td>1000</td>\n",
|
1047 |
+
" <td>0.026800</td>\n",
|
1048 |
+
" </tr>\n",
|
1049 |
+
" <tr>\n",
|
1050 |
+
" <td>1050</td>\n",
|
1051 |
+
" <td>0.026300</td>\n",
|
1052 |
+
" </tr>\n",
|
1053 |
+
" <tr>\n",
|
1054 |
+
" <td>1100</td>\n",
|
1055 |
+
" <td>0.026900</td>\n",
|
1056 |
+
" </tr>\n",
|
1057 |
+
" <tr>\n",
|
1058 |
+
" <td>1150</td>\n",
|
1059 |
+
" <td>0.026100</td>\n",
|
1060 |
+
" </tr>\n",
|
1061 |
+
" <tr>\n",
|
1062 |
+
" <td>1200</td>\n",
|
1063 |
+
" <td>0.025400</td>\n",
|
1064 |
+
" </tr>\n",
|
1065 |
+
" <tr>\n",
|
1066 |
+
" <td>1250</td>\n",
|
1067 |
+
" <td>0.023900</td>\n",
|
1068 |
+
" </tr>\n",
|
1069 |
+
" <tr>\n",
|
1070 |
+
" <td>1300</td>\n",
|
1071 |
+
" <td>0.025000</td>\n",
|
1072 |
+
" </tr>\n",
|
1073 |
+
" <tr>\n",
|
1074 |
+
" <td>1350</td>\n",
|
1075 |
+
" <td>0.024000</td>\n",
|
1076 |
+
" </tr>\n",
|
1077 |
+
" <tr>\n",
|
1078 |
+
" <td>1400</td>\n",
|
1079 |
+
" <td>0.025600</td>\n",
|
1080 |
+
" </tr>\n",
|
1081 |
+
" <tr>\n",
|
1082 |
+
" <td>1450</td>\n",
|
1083 |
+
" <td>0.024300</td>\n",
|
1084 |
+
" </tr>\n",
|
1085 |
+
" <tr>\n",
|
1086 |
+
" <td>1500</td>\n",
|
1087 |
+
" <td>0.023100</td>\n",
|
1088 |
+
" </tr>\n",
|
1089 |
+
" <tr>\n",
|
1090 |
+
" <td>1550</td>\n",
|
1091 |
+
" <td>0.024800</td>\n",
|
1092 |
+
" </tr>\n",
|
1093 |
+
" <tr>\n",
|
1094 |
+
" <td>1600</td>\n",
|
1095 |
+
" <td>0.023300</td>\n",
|
1096 |
+
" </tr>\n",
|
1097 |
+
" <tr>\n",
|
1098 |
+
" <td>1650</td>\n",
|
1099 |
+
" <td>0.019400</td>\n",
|
1100 |
+
" </tr>\n",
|
1101 |
+
" <tr>\n",
|
1102 |
+
" <td>1700</td>\n",
|
1103 |
+
" <td>0.019600</td>\n",
|
1104 |
+
" </tr>\n",
|
1105 |
+
" <tr>\n",
|
1106 |
+
" <td>1750</td>\n",
|
1107 |
+
" <td>0.020400</td>\n",
|
1108 |
+
" </tr>\n",
|
1109 |
+
" <tr>\n",
|
1110 |
+
" <td>1800</td>\n",
|
1111 |
+
" <td>0.019600</td>\n",
|
1112 |
+
" </tr>\n",
|
1113 |
+
" <tr>\n",
|
1114 |
+
" <td>1850</td>\n",
|
1115 |
+
" <td>0.019300</td>\n",
|
1116 |
+
" </tr>\n",
|
1117 |
+
" <tr>\n",
|
1118 |
+
" <td>1900</td>\n",
|
1119 |
+
" <td>0.019600</td>\n",
|
1120 |
+
" </tr>\n",
|
1121 |
+
" <tr>\n",
|
1122 |
+
" <td>1950</td>\n",
|
1123 |
+
" <td>0.018600</td>\n",
|
1124 |
+
" </tr>\n",
|
1125 |
+
" <tr>\n",
|
1126 |
+
" <td>2000</td>\n",
|
1127 |
+
" <td>0.019400</td>\n",
|
1128 |
+
" </tr>\n",
|
1129 |
+
" <tr>\n",
|
1130 |
+
" <td>2050</td>\n",
|
1131 |
+
" <td>0.020000</td>\n",
|
1132 |
+
" </tr>\n",
|
1133 |
+
" <tr>\n",
|
1134 |
+
" <td>2100</td>\n",
|
1135 |
+
" <td>0.020300</td>\n",
|
1136 |
+
" </tr>\n",
|
1137 |
+
" <tr>\n",
|
1138 |
+
" <td>2150</td>\n",
|
1139 |
+
" <td>0.019400</td>\n",
|
1140 |
+
" </tr>\n",
|
1141 |
+
" <tr>\n",
|
1142 |
+
" <td>2200</td>\n",
|
1143 |
+
" <td>0.019300</td>\n",
|
1144 |
+
" </tr>\n",
|
1145 |
+
" <tr>\n",
|
1146 |
+
" <td>2250</td>\n",
|
1147 |
+
" <td>0.019800</td>\n",
|
1148 |
+
" </tr>\n",
|
1149 |
+
" <tr>\n",
|
1150 |
+
" <td>2300</td>\n",
|
1151 |
+
" <td>0.019300</td>\n",
|
1152 |
+
" </tr>\n",
|
1153 |
+
" <tr>\n",
|
1154 |
+
" <td>2350</td>\n",
|
1155 |
+
" <td>0.019500</td>\n",
|
1156 |
+
" </tr>\n",
|
1157 |
+
" </tbody>\n",
|
1158 |
+
"</table><p>"
|
1159 |
+
],
|
1160 |
+
"text/plain": [
|
1161 |
+
"<IPython.core.display.HTML object>"
|
1162 |
+
]
|
1163 |
+
},
|
1164 |
+
"metadata": {},
|
1165 |
+
"output_type": "display_data"
|
1166 |
+
},
|
1167 |
+
{
|
1168 |
+
"data": {
|
1169 |
+
"text/plain": [
|
1170 |
+
"TrainOutput(global_step=2391, training_loss=0.07075354540412868, metrics={'train_runtime': 15162.9574, 'train_samples_per_second': 0.631, 'train_steps_per_second': 0.158, 'total_flos': 3.0420974601928704e+17, 'train_loss': 0.07075354540412868, 'epoch': 3.0})"
|
1171 |
+
]
|
1172 |
+
},
|
1173 |
+
"execution_count": 13,
|
1174 |
+
"metadata": {},
|
1175 |
+
"output_type": "execute_result"
|
1176 |
+
}
|
1177 |
+
],
|
1178 |
+
"source": [
|
1179 |
+
"trainer = transformers.Trainer(\n",
|
1180 |
+
" model=model,\n",
|
1181 |
+
" train_dataset=data[\"train\"],\n",
|
1182 |
+
"# eval_dataset=data[\"test\"],\n",
|
1183 |
+
" args=training_args,\n",
|
1184 |
+
" data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False),\n",
|
1185 |
+
")\n",
|
1186 |
+
"model.config.use_cache = False # silence the warnings. Please re-enable for inference!\n",
|
1187 |
+
"\n",
|
1188 |
+
"checkpoint_path = Path(\"/content/artifacts/checkpoints\")\n",
|
1189 |
+
"\n",
|
1190 |
+
"# Only set resume_from_checkpoint True when directory exists and contains files\n",
|
1191 |
+
"resume_from_checkpoint = checkpoint_path.is_dir() and any(checkpoint_path.iterdir())\n",
|
1192 |
+
"if resume_from_checkpoint:\n",
|
1193 |
+
" print(\"Resuming from checkpoint:\", list(checkpoint_path.rglob(\"\")))\n",
|
1194 |
+
"trainer.train(resume_from_checkpoint=resume_from_checkpoint)"
|
1195 |
+
]
|
1196 |
+
},
|
1197 |
+
{
|
1198 |
+
"cell_type": "code",
|
1199 |
+
"execution_count": 14,
|
1200 |
+
"id": "172e47a7-400e-4f82-a5e3-38135ecf532f",
|
1201 |
+
"metadata": {
|
1202 |
+
"execution": {
|
1203 |
+
"iopub.execute_input": "2023-10-22T04:52:43.424539Z",
|
1204 |
+
"iopub.status.busy": "2023-10-22T04:52:43.423767Z",
|
1205 |
+
"iopub.status.idle": "2023-10-22T04:53:03.150108Z",
|
1206 |
+
"shell.execute_reply": "2023-10-22T04:53:03.149387Z"
|
1207 |
+
},
|
1208 |
+
"papermill": {
|
1209 |
+
"duration": 21.909882,
|
1210 |
+
"end_time": "2023-10-22T04:53:04.171757",
|
1211 |
+
"exception": false,
|
1212 |
+
"start_time": "2023-10-22T04:52:42.261875",
|
1213 |
+
"status": "completed"
|
1214 |
+
},
|
1215 |
+
"tags": []
|
1216 |
+
},
|
1217 |
+
"outputs": [
|
1218 |
+
{
|
1219 |
+
"data": {
|
1220 |
+
"text/plain": [
|
1221 |
+
"PeftModelForCausalLM(\n",
|
1222 |
+
" (base_model): LoraModel(\n",
|
1223 |
+
" (model): LlamaForCausalLM(\n",
|
1224 |
+
" (model): LlamaModel(\n",
|
1225 |
+
" (embed_tokens): ModulesToSaveWrapper(\n",
|
1226 |
+
" (original_module): Embedding(32001, 4096)\n",
|
1227 |
+
" (modules_to_save): ModuleDict(\n",
|
1228 |
+
" (default): Embedding(32001, 4096)\n",
|
1229 |
+
" )\n",
|
1230 |
+
" )\n",
|
1231 |
+
" (layers): ModuleList(\n",
|
1232 |
+
" (0-31): 32 x LlamaDecoderLayer(\n",
|
1233 |
+
" (self_attn): LlamaAttention(\n",
|
1234 |
+
" (q_proj): Linear(\n",
|
1235 |
+
" in_features=4096, out_features=4096, bias=False\n",
|
1236 |
+
" (lora_dropout): ModuleDict(\n",
|
1237 |
+
" (default): Dropout(p=0.05, inplace=False)\n",
|
1238 |
+
" )\n",
|
1239 |
+
" (lora_A): ModuleDict(\n",
|
1240 |
+
" (default): Linear(in_features=4096, out_features=16, bias=False)\n",
|
1241 |
+
" )\n",
|
1242 |
+
" (lora_B): ModuleDict(\n",
|
1243 |
+
" (default): Linear(in_features=16, out_features=4096, bias=False)\n",
|
1244 |
+
" )\n",
|
1245 |
+
" (lora_embedding_A): ParameterDict()\n",
|
1246 |
+
" (lora_embedding_B): ParameterDict()\n",
|
1247 |
+
" )\n",
|
1248 |
+
" (k_proj): Linear(\n",
|
1249 |
+
" in_features=4096, out_features=4096, bias=False\n",
|
1250 |
+
" (lora_dropout): ModuleDict(\n",
|
1251 |
+
" (default): Dropout(p=0.05, inplace=False)\n",
|
1252 |
+
" )\n",
|
1253 |
+
" (lora_A): ModuleDict(\n",
|
1254 |
+
" (default): Linear(in_features=4096, out_features=16, bias=False)\n",
|
1255 |
+
" )\n",
|
1256 |
+
" (lora_B): ModuleDict(\n",
|
1257 |
+
" (default): Linear(in_features=16, out_features=4096, bias=False)\n",
|
1258 |
+
" )\n",
|
1259 |
+
" (lora_embedding_A): ParameterDict()\n",
|
1260 |
+
" (lora_embedding_B): ParameterDict()\n",
|
1261 |
+
" )\n",
|
1262 |
+
" (v_proj): Linear(\n",
|
1263 |
+
" in_features=4096, out_features=4096, bias=False\n",
|
1264 |
+
" (lora_dropout): ModuleDict(\n",
|
1265 |
+
" (default): Dropout(p=0.05, inplace=False)\n",
|
1266 |
+
" )\n",
|
1267 |
+
" (lora_A): ModuleDict(\n",
|
1268 |
+
" (default): Linear(in_features=4096, out_features=16, bias=False)\n",
|
1269 |
+
" )\n",
|
1270 |
+
" (lora_B): ModuleDict(\n",
|
1271 |
+
" (default): Linear(in_features=16, out_features=4096, bias=False)\n",
|
1272 |
+
" )\n",
|
1273 |
+
" (lora_embedding_A): ParameterDict()\n",
|
1274 |
+
" (lora_embedding_B): ParameterDict()\n",
|
1275 |
+
" )\n",
|
1276 |
+
" (o_proj): Linear(\n",
|
1277 |
+
" in_features=4096, out_features=4096, bias=False\n",
|
1278 |
+
" (lora_dropout): ModuleDict(\n",
|
1279 |
+
" (default): Dropout(p=0.05, inplace=False)\n",
|
1280 |
+
" )\n",
|
1281 |
+
" (lora_A): ModuleDict(\n",
|
1282 |
+
" (default): Linear(in_features=4096, out_features=16, bias=False)\n",
|
1283 |
+
" )\n",
|
1284 |
+
" (lora_B): ModuleDict(\n",
|
1285 |
+
" (default): Linear(in_features=16, out_features=4096, bias=False)\n",
|
1286 |
+
" )\n",
|
1287 |
+
" (lora_embedding_A): ParameterDict()\n",
|
1288 |
+
" (lora_embedding_B): ParameterDict()\n",
|
1289 |
+
" )\n",
|
1290 |
+
" (rotary_emb): LlamaRotaryEmbedding()\n",
|
1291 |
+
" )\n",
|
1292 |
+
" (mlp): LlamaMLP(\n",
|
1293 |
+
" (gate_proj): Linear(\n",
|
1294 |
+
" in_features=4096, out_features=11008, bias=False\n",
|
1295 |
+
" (lora_dropout): ModuleDict(\n",
|
1296 |
+
" (default): Dropout(p=0.05, inplace=False)\n",
|
1297 |
+
" )\n",
|
1298 |
+
" (lora_A): ModuleDict(\n",
|
1299 |
+
" (default): Linear(in_features=4096, out_features=16, bias=False)\n",
|
1300 |
+
" )\n",
|
1301 |
+
" (lora_B): ModuleDict(\n",
|
1302 |
+
" (default): Linear(in_features=16, out_features=11008, bias=False)\n",
|
1303 |
+
" )\n",
|
1304 |
+
" (lora_embedding_A): ParameterDict()\n",
|
1305 |
+
" (lora_embedding_B): ParameterDict()\n",
|
1306 |
+
" )\n",
|
1307 |
+
" (up_proj): Linear(\n",
|
1308 |
+
" in_features=4096, out_features=11008, bias=False\n",
|
1309 |
+
" (lora_dropout): ModuleDict(\n",
|
1310 |
+
" (default): Dropout(p=0.05, inplace=False)\n",
|
1311 |
+
" )\n",
|
1312 |
+
" (lora_A): ModuleDict(\n",
|
1313 |
+
" (default): Linear(in_features=4096, out_features=16, bias=False)\n",
|
1314 |
+
" )\n",
|
1315 |
+
" (lora_B): ModuleDict(\n",
|
1316 |
+
" (default): Linear(in_features=16, out_features=11008, bias=False)\n",
|
1317 |
+
" )\n",
|
1318 |
+
" (lora_embedding_A): ParameterDict()\n",
|
1319 |
+
" (lora_embedding_B): ParameterDict()\n",
|
1320 |
+
" )\n",
|
1321 |
+
" (down_proj): Linear(\n",
|
1322 |
+
" in_features=11008, out_features=4096, bias=False\n",
|
1323 |
+
" (lora_dropout): ModuleDict(\n",
|
1324 |
+
" (default): Dropout(p=0.05, inplace=False)\n",
|
1325 |
+
" )\n",
|
1326 |
+
" (lora_A): ModuleDict(\n",
|
1327 |
+
" (default): Linear(in_features=11008, out_features=16, bias=False)\n",
|
1328 |
+
" )\n",
|
1329 |
+
" (lora_B): ModuleDict(\n",
|
1330 |
+
" (default): Linear(in_features=16, out_features=4096, bias=False)\n",
|
1331 |
+
" )\n",
|
1332 |
+
" (lora_embedding_A): ParameterDict()\n",
|
1333 |
+
" (lora_embedding_B): ParameterDict()\n",
|
1334 |
+
" )\n",
|
1335 |
+
" (act_fn): SiLUActivation()\n",
|
1336 |
+
" )\n",
|
1337 |
+
" (input_layernorm): LlamaRMSNorm()\n",
|
1338 |
+
" (post_attention_layernorm): LlamaRMSNorm()\n",
|
1339 |
+
" )\n",
|
1340 |
+
" )\n",
|
1341 |
+
" (norm): LlamaRMSNorm()\n",
|
1342 |
+
" )\n",
|
1343 |
+
" (lm_head): ModulesToSaveWrapper(\n",
|
1344 |
+
" (original_module): Linear(in_features=4096, out_features=32001, bias=False)\n",
|
1345 |
+
" (modules_to_save): ModuleDict(\n",
|
1346 |
+
" (default): Linear(in_features=4096, out_features=32001, bias=False)\n",
|
1347 |
+
" )\n",
|
1348 |
+
" )\n",
|
1349 |
+
" )\n",
|
1350 |
+
" )\n",
|
1351 |
+
")"
|
1352 |
+
]
|
1353 |
+
},
|
1354 |
+
"execution_count": 14,
|
1355 |
+
"metadata": {},
|
1356 |
+
"output_type": "execute_result"
|
1357 |
+
}
|
1358 |
+
],
|
1359 |
+
"source": [
|
1360 |
+
"model.save_pretrained(trained_model_path_lora)\n",
|
1361 |
+
"model"
|
1362 |
+
]
|
1363 |
+
},
|
1364 |
+
{
|
1365 |
+
"cell_type": "code",
|
1366 |
+
"execution_count": 15,
|
1367 |
+
"id": "dea4e68e-57a7-48bd-bad9-f03dfe3f8a06",
|
1368 |
+
"metadata": {
|
1369 |
+
"execution": {
|
1370 |
+
"iopub.execute_input": "2023-10-22T04:53:06.109528Z",
|
1371 |
+
"iopub.status.busy": "2023-10-22T04:53:06.108736Z",
|
1372 |
+
"iopub.status.idle": "2023-10-22T04:53:06.356699Z",
|
1373 |
+
"shell.execute_reply": "2023-10-22T04:53:06.355856Z"
|
1374 |
+
},
|
1375 |
+
"papermill": {
|
1376 |
+
"duration": 1.205767,
|
1377 |
+
"end_time": "2023-10-22T04:53:06.358311",
|
1378 |
+
"exception": false,
|
1379 |
+
"start_time": "2023-10-22T04:53:05.152544",
|
1380 |
+
"status": "completed"
|
1381 |
+
},
|
1382 |
+
"tags": []
|
1383 |
+
},
|
1384 |
+
"outputs": [
|
1385 |
+
{
|
1386 |
+
"name": "stdout",
|
1387 |
+
"output_type": "stream",
|
1388 |
+
"text": [
|
1389 |
+
"total 1.2G\r\n",
|
1390 |
+
" 512 -rw-r--r-- 1 root 3003 88 Oct 22 04:52 README.md\r\n",
|
1391 |
+
"1.0K -rw-r--r-- 1 root 3003 550 Oct 22 04:53 adapter_config.json\r\n",
|
1392 |
+
"1.2G -rw-r--r-- 1 root 3003 1.2G Oct 22 04:52 adapter_model.bin\r\n"
|
1393 |
+
]
|
1394 |
+
},
|
1395 |
+
{
|
1396 |
+
"name": "stderr",
|
1397 |
+
"output_type": "stream",
|
1398 |
+
"text": [
|
1399 |
+
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
|
1400 |
+
"To disable this warning, you can either:\n",
|
1401 |
+
"\t- Avoid using `tokenizers` before the fork if possible\n",
|
1402 |
+
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
|
1403 |
+
]
|
1404 |
+
}
|
1405 |
+
],
|
1406 |
+
"source": [
|
1407 |
+
"! ls -lash {trained_model_path_lora}"
|
1408 |
+
]
|
1409 |
+
},
|
1410 |
+
{
|
1411 |
+
"cell_type": "code",
|
1412 |
+
"execution_count": 16,
|
1413 |
+
"id": "09db36b7-ead6-4368-9bfb-13ba1ba800a5",
|
1414 |
+
"metadata": {
|
1415 |
+
"execution": {
|
1416 |
+
"iopub.execute_input": "2023-10-22T04:53:08.298375Z",
|
1417 |
+
"iopub.status.busy": "2023-10-22T04:53:08.297543Z",
|
1418 |
+
"iopub.status.idle": "2023-10-22T04:54:00.325080Z",
|
1419 |
+
"shell.execute_reply": "2023-10-22T04:54:00.324374Z"
|
1420 |
+
},
|
1421 |
+
"papermill": {
|
1422 |
+
"duration": 54.039738,
|
1423 |
+
"end_time": "2023-10-22T04:54:01.415212",
|
1424 |
+
"exception": false,
|
1425 |
+
"start_time": "2023-10-22T04:53:07.375474",
|
1426 |
+
"status": "completed"
|
1427 |
+
},
|
1428 |
+
"tags": []
|
1429 |
+
},
|
1430 |
+
"outputs": [
|
1431 |
+
{
|
1432 |
+
"data": {
|
1433 |
+
"text/plain": [
|
1434 |
+
"LlamaForCausalLM(\n",
|
1435 |
+
" (model): LlamaModel(\n",
|
1436 |
+
" (embed_tokens): Embedding(32001, 4096)\n",
|
1437 |
+
" (layers): ModuleList(\n",
|
1438 |
+
" (0-31): 32 x LlamaDecoderLayer(\n",
|
1439 |
+
" (self_attn): LlamaAttention(\n",
|
1440 |
+
" (q_proj): Linear(in_features=4096, out_features=4096, bias=False)\n",
|
1441 |
+
" (k_proj): Linear(in_features=4096, out_features=4096, bias=False)\n",
|
1442 |
+
" (v_proj): Linear(in_features=4096, out_features=4096, bias=False)\n",
|
1443 |
+
" (o_proj): Linear(in_features=4096, out_features=4096, bias=False)\n",
|
1444 |
+
" (rotary_emb): LlamaRotaryEmbedding()\n",
|
1445 |
+
" )\n",
|
1446 |
+
" (mlp): LlamaMLP(\n",
|
1447 |
+
" (gate_proj): Linear(in_features=4096, out_features=11008, bias=False)\n",
|
1448 |
+
" (up_proj): Linear(in_features=4096, out_features=11008, bias=False)\n",
|
1449 |
+
" (down_proj): Linear(in_features=11008, out_features=4096, bias=False)\n",
|
1450 |
+
" (act_fn): SiLUActivation()\n",
|
1451 |
+
" )\n",
|
1452 |
+
" (input_layernorm): LlamaRMSNorm()\n",
|
1453 |
+
" (post_attention_layernorm): LlamaRMSNorm()\n",
|
1454 |
+
" )\n",
|
1455 |
+
" )\n",
|
1456 |
+
" (norm): LlamaRMSNorm()\n",
|
1457 |
+
" )\n",
|
1458 |
+
" (lm_head): Linear(in_features=4096, out_features=32001, bias=False)\n",
|
1459 |
+
")"
|
1460 |
+
]
|
1461 |
+
},
|
1462 |
+
"execution_count": 16,
|
1463 |
+
"metadata": {},
|
1464 |
+
"output_type": "execute_result"
|
1465 |
+
}
|
1466 |
+
],
|
1467 |
+
"source": [
|
1468 |
+
"model = model.merge_and_unload().half()\n",
|
1469 |
+
"model"
|
1470 |
+
]
|
1471 |
+
},
|
1472 |
+
{
|
1473 |
+
"cell_type": "code",
|
1474 |
+
"execution_count": 17,
|
1475 |
+
"id": "270a9a72-3a12-4d83-aa7d-2d167cb28cb4",
|
1476 |
+
"metadata": {
|
1477 |
+
"execution": {
|
1478 |
+
"iopub.execute_input": "2023-10-22T04:54:03.491633Z",
|
1479 |
+
"iopub.status.busy": "2023-10-22T04:54:03.490944Z",
|
1480 |
+
"iopub.status.idle": "2023-10-22T04:54:03.732210Z",
|
1481 |
+
"shell.execute_reply": "2023-10-22T04:54:03.731396Z"
|
1482 |
+
},
|
1483 |
+
"papermill": {
|
1484 |
+
"duration": 1.235829,
|
1485 |
+
"end_time": "2023-10-22T04:54:03.733715",
|
1486 |
+
"exception": false,
|
1487 |
+
"start_time": "2023-10-22T04:54:02.497886",
|
1488 |
+
"status": "completed"
|
1489 |
+
},
|
1490 |
+
"tags": []
|
1491 |
+
},
|
1492 |
+
"outputs": [
|
1493 |
+
{
|
1494 |
+
"name": "stdout",
|
1495 |
+
"output_type": "stream",
|
1496 |
+
"text": [
|
1497 |
+
"total 0\r\n",
|
1498 |
+
"drwxr-xr-x 1 root 3003 0 Oct 22 00:39 checkpoints\r\n",
|
1499 |
+
"drwxr-xr-x 1 root 3003 0 Oct 22 00:39 lora\r\n",
|
1500 |
+
"drwxr-xr-x 1 root 3003 0 Oct 22 00:33 src\r\n"
|
1501 |
+
]
|
1502 |
+
},
|
1503 |
+
{
|
1504 |
+
"name": "stderr",
|
1505 |
+
"output_type": "stream",
|
1506 |
+
"text": [
|
1507 |
+
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
|
1508 |
+
"To disable this warning, you can either:\n",
|
1509 |
+
"\t- Avoid using `tokenizers` before the fork if possible\n",
|
1510 |
+
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
|
1511 |
+
]
|
1512 |
+
}
|
1513 |
+
],
|
1514 |
+
"source": [
|
1515 |
+
"! ls -l {trained_model_path}"
|
1516 |
+
]
|
1517 |
+
},
|
1518 |
+
{
|
1519 |
+
"cell_type": "code",
|
1520 |
+
"execution_count": 18,
|
1521 |
+
"id": "260e9d79-6eb8-4516-bf8f-825a25606391",
|
1522 |
+
"metadata": {
|
1523 |
+
"execution": {
|
1524 |
+
"iopub.execute_input": "2023-10-22T04:54:05.862618Z",
|
1525 |
+
"iopub.status.busy": "2023-10-22T04:54:05.861702Z",
|
1526 |
+
"iopub.status.idle": "2023-10-22T04:56:43.569718Z",
|
1527 |
+
"shell.execute_reply": "2023-10-22T04:56:43.569054Z"
|
1528 |
+
},
|
1529 |
+
"papermill": {
|
1530 |
+
"duration": 159.765833,
|
1531 |
+
"end_time": "2023-10-22T04:56:44.594302",
|
1532 |
+
"exception": false,
|
1533 |
+
"start_time": "2023-10-22T04:54:04.828469",
|
1534 |
+
"status": "completed"
|
1535 |
+
},
|
1536 |
+
"tags": []
|
1537 |
+
},
|
1538 |
+
"outputs": [
|
1539 |
+
{
|
1540 |
+
"data": {
|
1541 |
+
"text/plain": [
|
1542 |
+
"('/content/artifacts/tokenizer_config.json',\n",
|
1543 |
+
" '/content/artifacts/special_tokens_map.json',\n",
|
1544 |
+
" '/content/artifacts/tokenizer.model',\n",
|
1545 |
+
" '/content/artifacts/added_tokens.json',\n",
|
1546 |
+
" '/content/artifacts/tokenizer.json')"
|
1547 |
+
]
|
1548 |
+
},
|
1549 |
+
"execution_count": 18,
|
1550 |
+
"metadata": {},
|
1551 |
+
"output_type": "execute_result"
|
1552 |
+
}
|
1553 |
+
],
|
1554 |
+
"source": [
|
1555 |
+
"model.save_pretrained(trained_model_path)\n",
|
1556 |
+
"tokenizer.save_pretrained(trained_model_path)"
|
1557 |
+
]
|
1558 |
+
},
|
1559 |
+
{
|
1560 |
+
"cell_type": "code",
|
1561 |
+
"execution_count": 19,
|
1562 |
+
"id": "6d90a920-fb22-4291-8466-411ff41e31be",
|
1563 |
+
"metadata": {
|
1564 |
+
"execution": {
|
1565 |
+
"iopub.execute_input": "2023-10-22T04:56:46.484015Z",
|
1566 |
+
"iopub.status.busy": "2023-10-22T04:56:46.483256Z",
|
1567 |
+
"iopub.status.idle": "2023-10-22T04:56:46.762038Z",
|
1568 |
+
"shell.execute_reply": "2023-10-22T04:56:46.761255Z"
|
1569 |
+
},
|
1570 |
+
"papermill": {
|
1571 |
+
"duration": 1.264259,
|
1572 |
+
"end_time": "2023-10-22T04:56:46.763647",
|
1573 |
+
"exception": false,
|
1574 |
+
"start_time": "2023-10-22T04:56:45.499388",
|
1575 |
+
"status": "completed"
|
1576 |
+
},
|
1577 |
+
"tags": []
|
1578 |
+
},
|
1579 |
+
"outputs": [
|
1580 |
+
{
|
1581 |
+
"name": "stdout",
|
1582 |
+
"output_type": "stream",
|
1583 |
+
"text": [
|
1584 |
+
"total 13G\r\n",
|
1585 |
+
" 512 -rw-r--r-- 1 root 3003 21 Oct 22 04:56 added_tokens.json\r\n",
|
1586 |
+
" 0 drwxr-xr-x 1 root 3003 0 Oct 22 00:39 checkpoints\r\n",
|
1587 |
+
"1.0K -rw-r--r-- 1 root 3003 648 Oct 22 04:54 config.json\r\n",
|
1588 |
+
" 512 -rw-r--r-- 1 root 3003 183 Oct 22 04:54 generation_config.json\r\n",
|
1589 |
+
" 0 drwxr-xr-x 1 root 3003 0 Oct 22 00:39 lora\r\n",
|
1590 |
+
"9.3G -rw-r--r-- 1 root 3003 9.3G Oct 22 04:54 pytorch_model-00001-of-00002.bin\r\n",
|
1591 |
+
"3.3G -rw-r--r-- 1 root 3003 3.3G Oct 22 04:56 pytorch_model-00002-of-00002.bin\r\n",
|
1592 |
+
" 24K -rw-r--r-- 1 root 3003 24K Oct 22 04:56 pytorch_model.bin.index.json\r\n",
|
1593 |
+
"1.0K -rw-r--r-- 1 root 3003 552 Oct 22 04:56 special_tokens_map.json\r\n",
|
1594 |
+
" 0 drwxr-xr-x 1 root 3003 0 Oct 22 00:33 src\r\n",
|
1595 |
+
"1.8M -rw-r--r-- 1 root 3003 1.8M Oct 22 04:56 tokenizer.json\r\n",
|
1596 |
+
"489K -rw-r--r-- 1 root 3003 489K Oct 22 04:56 tokenizer.model\r\n",
|
1597 |
+
"1.5K -rw-r--r-- 1 root 3003 1.1K Oct 22 04:56 tokenizer_config.json\r\n"
|
1598 |
+
]
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"name": "stderr",
|
1602 |
+
"output_type": "stream",
|
1603 |
+
"text": [
|
1604 |
+
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
|
1605 |
+
"To disable this warning, you can either:\n",
|
1606 |
+
"\t- Avoid using `tokenizers` before the fork if possible\n",
|
1607 |
+
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
|
1608 |
+
]
|
1609 |
+
}
|
1610 |
+
],
|
1611 |
+
"source": [
|
1612 |
+
"! ls -lash {trained_model_path}"
|
1613 |
+
]
|
1614 |
+
},
|
1615 |
+
{
|
1616 |
+
"cell_type": "code",
|
1617 |
+
"execution_count": 20,
|
1618 |
+
"id": "202a694a",
|
1619 |
+
"metadata": {
|
1620 |
+
"execution": {
|
1621 |
+
"iopub.execute_input": "2023-10-22T04:56:48.598532Z",
|
1622 |
+
"iopub.status.busy": "2023-10-22T04:56:48.597715Z"
|
1623 |
+
},
|
1624 |
+
"papermill": {
|
1625 |
+
"duration": null,
|
1626 |
+
"end_time": null,
|
1627 |
+
"exception": false,
|
1628 |
+
"start_time": "2023-10-22T04:56:47.688302",
|
1629 |
+
"status": "running"
|
1630 |
+
},
|
1631 |
+
"tags": []
|
1632 |
+
},
|
1633 |
+
"outputs": [
|
1634 |
+
{
|
1635 |
+
"data": {
|
1636 |
+
"application/vnd.jupyter.widget-view+json": {
|
1637 |
+
"model_id": "fd6c61a8f74449ab8cd067d50d2265ad",
|
1638 |
+
"version_major": 2,
|
1639 |
+
"version_minor": 0
|
1640 |
+
},
|
1641 |
+
"text/plain": [
|
1642 |
+
"Upload 2 LFS files: 0%| | 0/2 [00:00<?, ?it/s]"
|
1643 |
+
]
|
1644 |
+
},
|
1645 |
+
"metadata": {},
|
1646 |
+
"output_type": "display_data"
|
1647 |
+
},
|
1648 |
+
{
|
1649 |
+
"data": {
|
1650 |
+
"application/vnd.jupyter.widget-view+json": {
|
1651 |
+
"model_id": "7fdcfa71a5bf459f8a08db3d2d018d9f",
|
1652 |
+
"version_major": 2,
|
1653 |
+
"version_minor": 0
|
1654 |
+
},
|
1655 |
+
"text/plain": [
|
1656 |
+
"pytorch_model-00001-of-00002.bin: 0%| | 0.00/9.98G [00:00<?, ?B/s]"
|
1657 |
+
]
|
1658 |
+
},
|
1659 |
+
"metadata": {},
|
1660 |
+
"output_type": "display_data"
|
1661 |
+
},
|
1662 |
+
{
|
1663 |
+
"data": {
|
1664 |
+
"application/vnd.jupyter.widget-view+json": {
|
1665 |
+
"model_id": "8d8a26f4fedf4be697918941db33850b",
|
1666 |
+
"version_major": 2,
|
1667 |
+
"version_minor": 0
|
1668 |
+
},
|
1669 |
+
"text/plain": [
|
1670 |
+
"pytorch_model-00002-of-00002.bin: 0%| | 0.00/3.50G [00:00<?, ?B/s]"
|
1671 |
+
]
|
1672 |
+
},
|
1673 |
+
"metadata": {},
|
1674 |
+
"output_type": "display_data"
|
1675 |
+
}
|
1676 |
+
],
|
1677 |
+
"source": [
|
1678 |
+
"from huggingface_hub import HfApi\n",
|
1679 |
+
"import shutil\n",
|
1680 |
+
"\n",
|
1681 |
+
"tokenizer_model_path_base = Path(model_path) / \"tokenizer.model\"\n",
|
1682 |
+
"tokenizer_model_path_trained = Path(trained_model_path) / \"tokenizer.model\"\n",
|
1683 |
+
"if tokenizer_model_path_base.exists() and not tokenizer_model_path_trained.exists():\n",
|
1684 |
+
" shutil.copy(tokenizer_model_path_base, tokenizer_model_path_trained)\n",
|
1685 |
+
"\n",
|
1686 |
+
"repo_id = params.get(\"push_to_hub\")\n",
|
1687 |
+
"if repo_id:\n",
|
1688 |
+
" model.push_to_hub(repo_id)\n",
|
1689 |
+
" tokenizer.push_to_hub(repo_id)\n",
|
1690 |
+
" hf_api = HfApi()\n",
|
1691 |
+
" # Upload tokenizer.model if it was in base model\n",
|
1692 |
+
" if tokenizer_model_path_base.exists():\n",
|
1693 |
+
" hf_api.upload_file(\n",
|
1694 |
+
" path_or_fileobj=tokenizer_model_path_base,\n",
|
1695 |
+
" path_in_repo=tokenizer_model_path_base.name,\n",
|
1696 |
+
" repo_id=repo_id,\n",
|
1697 |
+
" )\n",
|
1698 |
+
" logs_path = Path(\"/content/artifacts/src/train.ipynb\")\n",
|
1699 |
+
" if logs_path.exists():\n",
|
1700 |
+
" hf_api.upload_file(\n",
|
1701 |
+
" path_or_fileobj=logs_path,\n",
|
1702 |
+
" path_in_repo=logs_path.name,\n",
|
1703 |
+
" repo_id=repo_id,\n",
|
1704 |
+
" )\n"
|
1705 |
+
]
|
1706 |
+
}
|
1707 |
+
],
|
1708 |
+
"metadata": {
|
1709 |
+
"kernelspec": {
|
1710 |
+
"display_name": "Python 3 (ipykernel)",
|
1711 |
+
"language": "python",
|
1712 |
+
"name": "python3"
|
1713 |
+
},
|
1714 |
+
"language_info": {
|
1715 |
+
"codemirror_mode": {
|
1716 |
+
"name": "ipython",
|
1717 |
+
"version": 3
|
1718 |
+
},
|
1719 |
+
"file_extension": ".py",
|
1720 |
+
"mimetype": "text/x-python",
|
1721 |
+
"name": "python",
|
1722 |
+
"nbconvert_exporter": "python",
|
1723 |
+
"pygments_lexer": "ipython3",
|
1724 |
+
"version": "3.10.12"
|
1725 |
+
},
|
1726 |
+
"papermill": {
|
1727 |
+
"default_parameters": {},
|
1728 |
+
"duration": null,
|
1729 |
+
"end_time": null,
|
1730 |
+
"environment_variables": {},
|
1731 |
+
"exception": null,
|
1732 |
+
"input_path": "/content/src/train.ipynb",
|
1733 |
+
"output_path": "/content/artifacts/src/train.ipynb",
|
1734 |
+
"parameters": {},
|
1735 |
+
"start_time": "2023-10-22T00:33:15.528186",
|
1736 |
+
"version": "2.4.0"
|
1737 |
+
}
|
1738 |
+
},
|
1739 |
+
"nbformat": 4,
|
1740 |
+
"nbformat_minor": 5
|
1741 |
+
}
|