suayptalha
commited on
Create modeling_minGRULM.py
Browse files- modeling_minGRULM.py +78 -0
modeling_minGRULM.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
from transformers import PreTrainedModel
|
4 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
5 |
+
from torch.nn import CrossEntropyLoss
|
6 |
+
from typing import Optional
|
7 |
+
from .configuration_minGRULM import MinGRULMConfig
|
8 |
+
from minGRU_pytorch.minGRULM import minGRULM
|
9 |
+
|
10 |
+
|
11 |
+
class MinGRULMPreTrainedModel(PreTrainedModel):
|
12 |
+
config_class = MinGRULMConfig
|
13 |
+
base_model_prefix = "model"
|
14 |
+
|
15 |
+
def _init_weights(self, module):
|
16 |
+
std = 0.02
|
17 |
+
if isinstance(module, nn.Linear):
|
18 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
19 |
+
if module.bias is not None:
|
20 |
+
module.bias.data.zero_()
|
21 |
+
elif isinstance(module, nn.Embedding):
|
22 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
23 |
+
if module.padding_idx is not None:
|
24 |
+
module.weight.data[module.padding_idx].zero_()
|
25 |
+
|
26 |
+
|
27 |
+
class MinGRULMForCausalLM(MinGRULMPreTrainedModel):
|
28 |
+
def __init__(self, config: MinGRULMConfig):
|
29 |
+
super().__init__(config)
|
30 |
+
|
31 |
+
# Load model from minGRULM library
|
32 |
+
self.model = minGRULM(
|
33 |
+
num_tokens=config.vocab_size,
|
34 |
+
dim=config.d_model,
|
35 |
+
depth=config.n_layer,
|
36 |
+
ff_mult=config.ff_mult,
|
37 |
+
min_gru_expansion=config.expand,
|
38 |
+
enable_conv=config.enable_conv,
|
39 |
+
)
|
40 |
+
|
41 |
+
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
|
42 |
+
self.post_init()
|
43 |
+
|
44 |
+
def get_input_embeddings(self):
|
45 |
+
return self.model.token_emb
|
46 |
+
|
47 |
+
def set_input_embeddings(self, value):
|
48 |
+
self.model.token_emb = value
|
49 |
+
|
50 |
+
def get_output_embeddings(self):
|
51 |
+
return self.lm_head
|
52 |
+
|
53 |
+
def forward(
|
54 |
+
self,
|
55 |
+
input_ids: torch.LongTensor,
|
56 |
+
labels: Optional[torch.LongTensor] = None,
|
57 |
+
return_dict: Optional[bool] = True,
|
58 |
+
):
|
59 |
+
# Forward pass through the model
|
60 |
+
logits = self.model(input_ids)
|
61 |
+
|
62 |
+
loss = None
|
63 |
+
if labels is not None:
|
64 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
65 |
+
shift_labels = labels[..., 1:].contiguous()
|
66 |
+
loss_fct = CrossEntropyLoss()
|
67 |
+
loss = loss_fct(
|
68 |
+
shift_logits.view(-1, self.config.vocab_size),
|
69 |
+
shift_labels.view(-1),
|
70 |
+
)
|
71 |
+
|
72 |
+
if not return_dict:
|
73 |
+
return (loss, logits) if loss is not None else (logits,)
|
74 |
+
|
75 |
+
return CausalLMOutputWithPast(
|
76 |
+
loss=loss,
|
77 |
+
logits=logits,
|
78 |
+
)
|