Sungur-3x9B-Cosmos / modeling_gemma2moe.py
suayptalha's picture
Upload folder using huggingface_hub
fd5ef13 verified
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team and Gemma2MoE Contributors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Gemma2MoE model."""
import math
from typing import List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache, StaticCache
from transformers.modeling_outputs import MoeModelOutputWithPast, MoeCausalLMOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.generation import GenerationMixin
from transformers.utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
from .configuration_gemma2moe import Gemma2MoeConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "Gemma2MoeConfig"
# --- Auxiliary Loss & Router Functions ---
def load_balancing_loss_func(gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2) -> float:
r"""
Computes auxiliary load balancing loss as in Switch Transformer.
"""
if gate_logits is None or not isinstance(gate_logits, torch.Tensor):
return 0.0
# gate_logits: [batch_size * seq_len, num_experts] assumed flattened or [batch, seq, experts]
if gate_logits.dim() == 3:
gate_logits = gate_logits.view(-1, gate_logits.shape[-1])
routing_weights = torch.softmax(gate_logits, dim=-1)
# top_k indices
_, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
# expert_mask: [num_tokens, num_experts]
expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
if expert_mask.dim() == 3:
expert_mask = expert_mask.sum(dim=1) # Sum over k selected experts
# Normalize to get fraction of tokens per expert
tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
# Mean probability per expert
router_prob_per_expert = torch.mean(routing_weights, dim=0)
# Loss = N * sum(f_i * P_i)
overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert) * num_experts
return overall_loss
# --- Gemma 2 Components ---
class Gemma2RMSNorm(nn.Module):
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.zeros(dim))
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
output = self._norm(x.float())
# Gemma 2 signature: output * (1 + weight)
# Casting back to input dtype
output = output * (1.0 + self.weight.float())
return output.type_as(x)
class Gemma2RotaryEmbedding(nn.Module):
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
super().__init__()
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
self.register_buffer("inv_freq", None, persistent=False)
@torch.no_grad()
def forward(self, x, position_ids, seq_len=None):
# x: [bs, num_attention_heads, seq_len, head_size]
if self.inv_freq is None:
self.inv_freq = 1.0 / (
self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim)
)
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
position_ids_expanded = position_ids[:, None, :].float()
# Use float32 for RoPE calculation to maintain precision
with torch.autocast(device_type=x.device.type, enabled=False):
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos()
sin = emb.sin()
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin):
"""Applies Rotary Position Embedding to the query and key tensors."""
cos = cos.unsqueeze(1) # [bs, 1, seq_len, head_dim]
sin = sin.unsqueeze(1)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep).
Used for Grouped Query Attention (GQA).
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
class Gemma2Attention(nn.Module):
"""
Multi-headed attention with Soft-capping, Sliding Window and GQA.
"""
def __init__(self, config: Gemma2MoeConfig, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.attention_dropout = config.attention_dropout
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = config.head_dim
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
self.is_causal = True
# Gemma 2 scaling specific
self.scaling = config.query_pre_attn_scalar ** -0.5
# Soft capping parameter
self.attn_logit_soft_capping = config.attn_logit_soft_capping
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
self.rotary_emb = Gemma2RotaryEmbedding(
self.head_dim,
max_position_embeddings=self.max_position_embeddings,
base=self.rope_theta,
)
self.sliding_window = config.sliding_window
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
cos, sin = self.rotary_emb(value_states, position_ids=position_ids, seq_len=None)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# cache_position for static cache, legacy for dynamic
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position, "sliding_window": self.sliding_window}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
# Scaled Dot Product Calculation
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scaling
# Logit Soft Capping
if self.attn_logit_soft_capping is not None:
attn_weights = attn_weights / self.attn_logit_soft_capping
attn_weights = torch.tanh(attn_weights)
attn_weights = attn_weights * self.attn_logit_soft_capping
if attention_mask is not None:
# Mask should be broadcastable
attn_weights = attn_weights + attention_mask
# Softmax and Dropout
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, -1)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
# --- Expert & MoE Block ---
class Gemma2MLP(nn.Module):
"""
Gemma 2 MLP: Gated GELU Tanh
"""
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
class Gemma2MoeBlock(nn.Module):
"""
Sparse MoE Block for Gemma 2.
Uses Top-k gating and processes selected tokens through experts.
"""
def __init__(self, config: Gemma2MoeConfig):
super().__init__()
self.hidden_dim = config.hidden_size
self.num_experts = config.num_local_experts
self.top_k = config.num_experts_per_tok
self.jitter_noise = config.router_jitter_noise
self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
self.experts = nn.ModuleList([Gemma2MLP(config) for _ in range(self.num_experts)])
def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
batch_size, sequence_length, hidden_dim = hidden_states.shape
hidden_states_flat = hidden_states.view(-1, hidden_dim)
# Router Logits
router_logits = self.gate(hidden_states_flat)
if self.training and self.jitter_noise > 0:
router_logits += torch.empty_like(router_logits).uniform_(1.0 - self.jitter_noise, 1.0 + self.jitter_noise)
routing_weights = F.softmax(router_logits, dim=1)
topk_weight, topk_idx = torch.topk(routing_weights, self.top_k, dim=-1, sorted=False)
# Normalize weights
topk_weight /= topk_weight.sum(dim=-1, keepdim=True)
topk_weight = topk_weight.to(hidden_states.dtype)
# Routing process
# Using a loop here for clarity and simplicity in Python.
# For extreme performance, Triton or CUDA kernels should be used.
final_hidden_states = torch.zeros_like(hidden_states_flat)
# Flatten indices to handle batching easier
flat_topk_idx = topk_idx.view(-1)
# We need to process each expert
for i, expert in enumerate(self.experts):
# Find tokens assigned to this expert (in any of the top-k slots)
# This is a bit inefficient in pure PyTorch but ensures correctness without custom kernels
# Create a mask for tokens where this expert is selected
expert_mask = (topk_idx == i)
if expert_mask.any():
# We need to collect inputs, process, and scatter back
# This logic handles cases where an expert is selected multiple times (unlikely in top-k but possible conceptually)
# But typically top-k implies distinct experts.
# Get indices where this expert is used
batch_indices, k_indices = torch.where(expert_mask)
# Extract inputs
inp = hidden_states_flat[batch_indices]
# Forward pass
out = expert(inp)
# Weighting: We need the weight associated with this selection
weights = topk_weight[batch_indices, k_indices]
# Accumulate result
# Ideally, scatter_add, but here we iterate.
# Since batch_indices might repeat if we allowed k repetitions (we don't usually),
# standard scatter_add_ is safer.
weighted_out = out * weights.unsqueeze(-1)
final_hidden_states.index_add_(0, batch_indices, weighted_out)
final_hidden_states = final_hidden_states.view(batch_size, sequence_length, hidden_dim)
return final_hidden_states, router_logits
# --- Decoder Layer (Strict Gemma 2 Topology) ---
class Gemma2MoeDecoderLayer(nn.Module):
def __init__(self, config: Gemma2MoeConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = Gemma2Attention(config, layer_idx)
self.block_sparse_moe = Gemma2MoeBlock(config)
# Gemma 2 uses 4 specific RMSNorms per layer
self.input_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.pre_feedforward_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_feedforward_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
output_router_logits: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
# --- Attention Path ---
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
)
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = residual + hidden_states # Residual Connection
# --- MoE Path ---
residual = hidden_states
hidden_states = self.pre_feedforward_layernorm(hidden_states)
# Using MoE instead of standard MLP
hidden_states, router_logits = self.block_sparse_moe(hidden_states)
hidden_states = self.post_feedforward_layernorm(hidden_states)
hidden_states = residual + hidden_states # Residual Connection
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
if output_router_logits:
outputs += (router_logits,)
return outputs
# --- PreTrained Model Wrappers ---
class Gemma2MoePreTrainedModel(PreTrainedModel):
config_class = Gemma2MoeConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["Gemma2MoeDecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = False # Keeping SDPA for broad compatibility logic implemented above
_supports_sdpa = True
_supports_cache_class = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
class Gemma2MoeModel(Gemma2MoePreTrainedModel):
def __init__(self, config: Gemma2MoeConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[Gemma2MoeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, MoeModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_router_logits = output_router_logits if output_router_logits is not None else self.config.output_router_logits
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
# 4D Attention Mask Creation (handles Sliding Window if config requests it)
causal_mask = _prepare_4d_causal_attention_mask(
attention_mask,
(inputs_embeds.shape[0], inputs_embeds.shape[1]),
inputs_embeds,
past_key_values.get_seq_length() if past_key_values is not None else 0,
sliding_window=self.config.sliding_window,
)
# Normalization (Gemma 2 embedding scaling)
normalizer = torch.tensor(self.config.hidden_size**0.5, dtype=inputs_embeds.dtype)
hidden_states = inputs_embeds * normalizer
all_hidden_states = () if output_hidden_states else None
all_router_logits = () if output_router_logits else None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
causal_mask,
position_ids,
past_key_values,
output_attentions,
output_router_logits,
use_cache,
cache_position,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
output_router_logits=output_router_logits,
use_cache=use_cache,
cache_position=cache_position,
)
hidden_states = layer_outputs[0]
if output_router_logits:
all_router_logits += (layer_outputs[-1],)
hidden_states = self.norm(hidden_states)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, past_key_values, all_hidden_states, all_router_logits] if v is not None)
return MoeModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values,
hidden_states=all_hidden_states,
router_logits=all_router_logits,
)
class Gemma2MoeForCausalLM(Gemma2MoePreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = Gemma2MoeModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.router_aux_loss_coef = config.router_aux_loss_coef
self.num_experts = config.num_local_experts
self.num_experts_per_tok = config.num_experts_per_tok
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, MoeCausalLMOutputWithPast]:
output_router_logits = output_router_logits if output_router_logits is not None else self.config.output_router_logits
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
output_router_logits=output_router_logits,
return_dict=return_dict,
cache_position=cache_position,
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
# Final Soft Capping (Gemma 2 Specific feature)
# tanh(logits / cap) * cap
if self.config.logit_soft_capping is not None:
logits = logits / self.config.logit_soft_capping
logits = torch.tanh(logits)
logits = logits * self.config.logit_soft_capping
logits = logits.float()
loss = None
if labels is not None:
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
loss = loss_fct(shift_logits, shift_labels)
aux_loss = None
if output_router_logits:
aux_loss = load_balancing_loss_func(
outputs.router_logits if return_dict else outputs[-1],
self.num_experts,
self.num_experts_per_tok,
)
if labels is not None:
loss += self.router_aux_loss_coef * aux_loss
if not return_dict:
output = (logits,) + outputs[1:]
if output_router_logits:
output = (aux_loss,) + output
return (loss,) + output if loss is not None else output
return MoeCausalLMOutputWithPast(
loss=loss,
aux_loss=aux_loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
router_logits=outputs.router_logits,
)
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, **kwargs
):
past_length = 0
if past_key_values is not None:
if isinstance(past_key_values, Cache):
past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length()
# --- HATA DÜZELTMESİ BAŞLANGICI ---
# get_max_length metodunun varlığını kontrol ediyoruz
if hasattr(past_key_values, "get_max_length") and past_key_values.get_max_length() is not None:
max_cache_length = torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
else:
max_cache_length = None
# --- HATA DÜZELTMESİ BİTİŞİ ---
cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length)
# Legacy Cache (Tuple formatı için)
else:
past_length = past_key_values[0][0].shape[2]
max_cache_length = None
# Keep only the unprocessed tokens:
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
elif past_length < input_ids.shape[1]:
input_ids = input_ids[:, past_length:]
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
if (
max_cache_length is not None
and attention_mask is not None
and cache_length + input_ids.shape[1] > max_cache_length
):
attention_mask = attention_mask[:, -max_cache_length:]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
if cache_position is None:
# Inputs embeds veya input_ids hangisi varsa onun shape'ini al
input_len = model_inputs.get("input_ids", inputs_embeds).shape[1]
cache_position = torch.arange(past_length, past_length + input_len, device=input_ids.device)
model_inputs.update(
{
"position_ids": position_ids,
"cache_position": cache_position,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
}
)
return model_inputs
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past