stulcrad's picture
Training in progress, step 500
9506ead verified
|
raw
history blame
4.74 kB
metadata
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: fine_tuned_XLMROBERTA_cs_wikann
    results: []

fine_tuned_XLMROBERTA_cs_wikann

This model is a fine-tuned version of FacebookAI/xlm-roberta-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1699
  • Precision: 0.9133
  • Recall: 0.9319
  • F1: 0.9225
  • Accuracy: 0.9699

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 7

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.7699 0.2 500 0.3588 0.5878 0.6990 0.6386 0.8894
0.3658 0.4 1000 0.2538 0.7427 0.8258 0.7821 0.9355
0.301 0.6 1500 0.2403 0.7649 0.8237 0.7932 0.9400
0.2796 0.8 2000 0.1828 0.7967 0.8509 0.8229 0.9456
0.258 1.0 2500 0.2223 0.7770 0.8322 0.8037 0.9400
0.2192 1.2 3000 0.1911 0.8156 0.8745 0.8440 0.9511
0.2161 1.4 3500 0.1878 0.8401 0.8858 0.8623 0.9551
0.2095 1.6 4000 0.1916 0.8306 0.8783 0.8538 0.9559
0.2137 1.8 4500 0.1657 0.8573 0.8874 0.8721 0.9585
0.1884 2.0 5000 0.2134 0.8486 0.8837 0.8658 0.9542
0.164 2.2 5500 0.2038 0.8619 0.9048 0.8828 0.9588
0.1564 2.4 6000 0.1707 0.8502 0.8874 0.8684 0.9582
0.1719 2.6 6500 0.1781 0.8645 0.8994 0.8816 0.9610
0.1565 2.8 7000 0.1908 0.8712 0.9021 0.8864 0.9614
0.1713 3.0 7500 0.1628 0.8672 0.8954 0.8811 0.9623
0.1359 3.2 8000 0.1890 0.8684 0.9072 0.8874 0.9624
0.1362 3.4 8500 0.1672 0.8653 0.9065 0.8854 0.9620
0.1301 3.6 9000 0.1866 0.8698 0.9069 0.8879 0.9631
0.1345 3.8 9500 0.1766 0.8759 0.9071 0.8913 0.9647
0.1363 4.0 10000 0.1817 0.8700 0.9137 0.8913 0.9626
0.1097 4.2 10500 0.1611 0.8861 0.9118 0.8987 0.9653
0.1045 4.4 11000 0.1743 0.8899 0.9123 0.9009 0.9659
0.1068 4.6 11500 0.1771 0.8870 0.9167 0.9016 0.9660
0.1168 4.8 12000 0.1704 0.8894 0.9174 0.9032 0.9660
0.1116 5.0 12500 0.1748 0.8926 0.9203 0.9062 0.9673
0.0979 5.2 13000 0.1726 0.8956 0.9255 0.9103 0.9672
0.0992 5.4 13500 0.1798 0.9058 0.9280 0.9168 0.9686
0.0929 5.6 14000 0.1740 0.9063 0.9304 0.9182 0.9693
0.098 5.8 14500 0.1690 0.8931 0.9262 0.9094 0.9683
0.0878 6.0 15000 0.1682 0.9065 0.9294 0.9178 0.9696
0.0925 6.2 15500 0.1691 0.9102 0.9308 0.9204 0.9694
0.0841 6.4 16000 0.1657 0.9138 0.9298 0.9217 0.9699
0.0748 6.6 16500 0.1696 0.9114 0.9313 0.9213 0.9695
0.0753 6.8 17000 0.1703 0.9118 0.9311 0.9214 0.9697
0.073 7.0 17500 0.1699 0.9133 0.9319 0.9225 0.9699

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0