|
--- |
|
license: mit |
|
base_model: FacebookAI/xlm-roberta-large |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- cnec |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: CNEC_xlm-roberta-large |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: cnec |
|
type: cnec |
|
config: default |
|
split: validation |
|
args: default |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.8556554661618552 |
|
- name: Recall |
|
type: recall |
|
value: 0.8972704714640198 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8759689922480619 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9759953161592506 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# CNEC_xlm-roberta-large |
|
|
|
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1541 |
|
- Precision: 0.8557 |
|
- Recall: 0.8973 |
|
- F1: 0.8760 |
|
- Accuracy: 0.9760 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.2518 | 1.12 | 500 | 0.1312 | 0.7219 | 0.8427 | 0.7777 | 0.9649 | |
|
| 0.0996 | 2.24 | 1000 | 0.1222 | 0.8003 | 0.8511 | 0.8249 | 0.9677 | |
|
| 0.0652 | 3.36 | 1500 | 0.1259 | 0.8137 | 0.8734 | 0.8425 | 0.9730 | |
|
| 0.0421 | 4.47 | 2000 | 0.1293 | 0.8306 | 0.8859 | 0.8573 | 0.9739 | |
|
| 0.0277 | 5.59 | 2500 | 0.1519 | 0.8320 | 0.8799 | 0.8553 | 0.9742 | |
|
| 0.0169 | 6.71 | 3000 | 0.1342 | 0.8516 | 0.8968 | 0.8736 | 0.9756 | |
|
| 0.0116 | 7.83 | 3500 | 0.1496 | 0.8540 | 0.8973 | 0.8751 | 0.9760 | |
|
| 0.0065 | 8.95 | 4000 | 0.1541 | 0.8557 | 0.8973 | 0.8760 | 0.9760 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.2 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.0 |
|
|