metadata
base_model: UWB-AIR/Czert-B-base-cased
tags:
- generated_from_trainer
datasets:
- cnec
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: CNEC_2_0_Czert-B-base-cased
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: cnec
type: cnec
config: default
split: validation
args: default
metrics:
- name: Precision
type: precision
value: 0.8034274193548387
- name: Recall
type: recall
value: 0.8551502145922747
- name: F1
type: f1
value: 0.8284823284823285
- name: Accuracy
type: accuracy
value: 0.9442021732913927
CNEC_2_0_Czert-B-base-cased
This model is a fine-tuned version of UWB-AIR/Czert-B-base-cased on the cnec dataset. It achieves the following results on the evaluation set:
- Loss: 0.3023
- Precision: 0.8034
- Recall: 0.8552
- F1: 0.8285
- Accuracy: 0.9442
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 25
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.6206 | 2.22 | 500 | 0.3126 | 0.7032 | 0.7489 | 0.7253 | 0.9228 |
0.2721 | 4.44 | 1000 | 0.2733 | 0.7487 | 0.8065 | 0.7765 | 0.9338 |
0.1976 | 6.67 | 1500 | 0.2585 | 0.7652 | 0.8230 | 0.7930 | 0.9372 |
0.1538 | 8.89 | 2000 | 0.2489 | 0.7823 | 0.8391 | 0.8097 | 0.9419 |
0.1265 | 11.11 | 2500 | 0.2603 | 0.7937 | 0.8448 | 0.8184 | 0.9424 |
0.1044 | 13.33 | 3000 | 0.2814 | 0.7933 | 0.8494 | 0.8204 | 0.9430 |
0.0915 | 15.56 | 3500 | 0.2855 | 0.7987 | 0.8512 | 0.8241 | 0.9432 |
0.0803 | 17.78 | 4000 | 0.2921 | 0.8035 | 0.8569 | 0.8294 | 0.9440 |
0.0738 | 20.0 | 4500 | 0.2936 | 0.8020 | 0.8530 | 0.8267 | 0.9433 |
0.0668 | 22.22 | 5000 | 0.3020 | 0.8042 | 0.8552 | 0.8289 | 0.9445 |
0.0643 | 24.44 | 5500 | 0.3023 | 0.8034 | 0.8552 | 0.8285 | 0.9442 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0