metadata
base_model: UWB-AIR/Czert-B-base-cased
tags:
- generated_from_trainer
datasets:
- cnec
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: CNEC_1_1_Czert-B-base-cased
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: cnec
type: cnec
config: default
split: validation
args: default
metrics:
- name: Precision
type: precision
value: 0.8261421319796954
- name: Recall
type: recall
value: 0.8622516556291391
- name: F1
type: f1
value: 0.8438107582631237
- name: Accuracy
type: accuracy
value: 0.9410182516810759
CNEC_1_1_Czert-B-base-cased
This model is a fine-tuned version of UWB-AIR/Czert-B-base-cased on the cnec dataset. It achieves the following results on the evaluation set:
- Loss: 0.3330
- Precision: 0.8261
- Recall: 0.8623
- F1: 0.8438
- Accuracy: 0.9410
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.5787 | 1.7 | 500 | 0.3008 | 0.7659 | 0.7943 | 0.7798 | 0.9262 |
0.2266 | 3.4 | 1000 | 0.2606 | 0.8026 | 0.8437 | 0.8226 | 0.9374 |
0.1443 | 5.1 | 1500 | 0.2565 | 0.8189 | 0.8525 | 0.8354 | 0.9407 |
0.1004 | 6.8 | 2000 | 0.2807 | 0.8129 | 0.8539 | 0.8329 | 0.9400 |
0.0759 | 8.5 | 2500 | 0.2989 | 0.8255 | 0.8627 | 0.8437 | 0.9411 |
0.0563 | 10.2 | 3000 | 0.3181 | 0.8251 | 0.8578 | 0.8411 | 0.9402 |
0.0475 | 11.9 | 3500 | 0.3279 | 0.8204 | 0.8609 | 0.8402 | 0.9404 |
0.0378 | 13.61 | 4000 | 0.3330 | 0.8261 | 0.8623 | 0.8438 | 0.9410 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0