metadata
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-large-finetuned-kinetics
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: videomae-large-finetuned-kinetics-finetuned-videomae-large-kitchen
results: []
videomae-large-finetuned-kinetics-finetuned-videomae-large-kitchen
This model is a fine-tuned version of MCG-NJU/videomae-large-finetuned-kinetics on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6309
- Accuracy: 0.8900
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 11100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
3.5158 | 0.02 | 222 | 3.6067 | 0.0588 |
2.8571 | 1.02 | 444 | 3.1445 | 0.3014 |
1.8854 | 2.02 | 666 | 2.3644 | 0.4607 |
1.5533 | 3.02 | 888 | 1.7967 | 0.5621 |
1.3935 | 4.02 | 1110 | 1.3755 | 0.6502 |
1.1722 | 5.02 | 1332 | 1.2232 | 0.7109 |
0.2896 | 6.02 | 1554 | 1.2859 | 0.6256 |
0.3166 | 7.02 | 1776 | 1.2910 | 0.6720 |
0.6902 | 8.02 | 1998 | 1.2702 | 0.6995 |
0.4193 | 9.02 | 2220 | 1.2087 | 0.7137 |
0.1889 | 10.02 | 2442 | 1.0500 | 0.7611 |
0.4502 | 11.02 | 2664 | 1.1647 | 0.7118 |
0.7703 | 12.02 | 2886 | 1.1037 | 0.7242 |
0.0957 | 13.02 | 3108 | 1.0967 | 0.7706 |
0.3202 | 14.02 | 3330 | 1.0479 | 0.7545 |
0.3634 | 15.02 | 3552 | 1.0714 | 0.8057 |
0.3883 | 16.02 | 3774 | 1.2323 | 0.7498 |
0.0322 | 17.02 | 3996 | 1.0504 | 0.7848 |
0.5108 | 18.02 | 4218 | 1.1356 | 0.7915 |
0.309 | 19.02 | 4440 | 1.1409 | 0.7592 |
0.56 | 20.02 | 4662 | 1.0828 | 0.7915 |
0.3675 | 21.02 | 4884 | 0.9154 | 0.8123 |
0.0076 | 22.02 | 5106 | 1.0974 | 0.8133 |
0.0451 | 23.02 | 5328 | 1.0361 | 0.8152 |
0.2558 | 24.02 | 5550 | 0.7830 | 0.8237 |
0.0125 | 25.02 | 5772 | 0.8728 | 0.8171 |
0.4184 | 26.02 | 5994 | 0.8413 | 0.8265 |
0.2566 | 27.02 | 6216 | 1.0644 | 0.8009 |
0.1257 | 28.02 | 6438 | 0.8641 | 0.8265 |
0.1326 | 29.02 | 6660 | 0.8444 | 0.8417 |
0.0436 | 30.02 | 6882 | 0.8615 | 0.8322 |
0.0408 | 31.02 | 7104 | 0.8075 | 0.8332 |
0.0316 | 32.02 | 7326 | 0.8699 | 0.8341 |
0.2235 | 33.02 | 7548 | 0.8151 | 0.8455 |
0.0079 | 34.02 | 7770 | 0.8099 | 0.8550 |
0.001 | 35.02 | 7992 | 0.8640 | 0.8370 |
0.0007 | 36.02 | 8214 | 0.7146 | 0.8483 |
0.464 | 37.02 | 8436 | 0.7917 | 0.8464 |
0.0005 | 38.02 | 8658 | 0.7239 | 0.8531 |
0.0004 | 39.02 | 8880 | 0.7702 | 0.8701 |
0.1705 | 40.02 | 9102 | 0.7543 | 0.8521 |
0.0039 | 41.02 | 9324 | 0.7456 | 0.8673 |
0.0168 | 42.02 | 9546 | 0.7255 | 0.8730 |
0.2615 | 43.02 | 9768 | 0.7453 | 0.8758 |
0.0004 | 44.02 | 9990 | 0.6824 | 0.8806 |
0.236 | 45.02 | 10212 | 0.6624 | 0.8825 |
0.0007 | 46.02 | 10434 | 0.6727 | 0.8815 |
0.0004 | 47.02 | 10656 | 0.6478 | 0.8863 |
0.268 | 48.02 | 10878 | 0.6309 | 0.8900 |
0.0025 | 49.02 | 11100 | 0.6284 | 0.8900 |
Framework versions
- Transformers 4.33.2
- Pytorch 1.12.1+cu113
- Datasets 2.14.5
- Tokenizers 0.13.3