steja's picture
luxembourgish whisper small ft
e8392a9
|
raw
history blame
2.49 kB
metadata
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - google/fleurs
metrics:
  - wer
model-index:
  - name: Whisper small Luxembourgish
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: google/fleurs lb_lu
          type: google/fleurs
          config: lb_lu
          split: test
        metrics:
          - name: Wer
            type: wer
            value: 39.49904580152672

Whisper small Luxembourgish

This model is a fine-tuned version of bofenghuang/whisper-small-cv11-german-punct on the google/fleurs lb_lu dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1857
  • Wer: 39.4990

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0618 38.46 500 1.0104 43.2968
0.0055 76.92 1000 1.0684 40.1288
0.0024 115.38 1500 1.1056 40.9447
0.0014 153.85 2000 1.1280 39.7615
0.0013 192.31 2500 1.1415 39.9857
0.0008 230.77 3000 1.1573 39.7996
0.0006 269.23 3500 1.1682 40.0095
0.0006 307.69 4000 1.1769 39.7233
0.0005 346.15 4500 1.1826 39.5134
0.0004 384.62 5000 1.1857 39.4990

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1
  • Tokenizers 0.13.2