metadata
license: cc-by-sa-4.0
language:
- en
- ja
tags:
- translation
FuguMT
This is a translation model using Marian-NMT. For more details, please see my repository.
- source language: en
- target language: ja
How to use
This model uses transformers and sentencepiece.
!pip install transformers sentencepiece
You can use this model directly with a pipeline:
from transformers import pipeline
fugu_translator = pipeline('translation', model='staka/fugumt-en-ja')
fugu_translator('This is a cat.')
If you want to translate multiple sentences, we recommend using pySBD.
!pip install transformers sentencepiece pysbd
import pysbd
seg_en = pysbd.Segmenter(language="en", clean=False)
from transformers import pipeline
fugu_translator = pipeline('translation', model='staka/fugumt-en-ja')
txt = 'This is a cat. It is very cute.'
print(fugu_translator(seg_en.segment(txt)))
Eval results
The results of the evaluation using tatoeba(randomly selected 500 sentences) are as follows:
source | target | BLEU(*1) |
---|---|---|
en | ja | 32.7 |
(*1) sacrebleu --tokenize ja-mecab