|
--- |
|
license: creativeml-openrail-m |
|
--- |
|
# SD-XL 1.0-base Model Card |
|
![row01](01.png) |
|
|
|
## Model |
|
|
|
![pipeline](pipeline.png) |
|
|
|
SDXL consists of a mixture-of-experts pipeline for latent diffusion: |
|
In a first step, the base model is used to generate (noisy) latents, |
|
which are then further processed with a refinement model (available here: TODO) specialized for the final denoising steps. |
|
Note that the base model can be used as a standalone module. |
|
|
|
Alternatively, we can use a two-step pipeline as follows: |
|
First, the base model is used to generate latents of the desired output size. |
|
In the second step, we use a specialized high-resolution model and apply a technique called SDEdit (https://arxiv.org/abs/2108.01073, also known as "img2img") |
|
to the latents generated in the first step, using the same prompt. Note that this technique is slightly slower than the first one, as it requires more function evaluations. |
|
|
|
### Model Description |
|
|
|
- **Developed by:** Stability AI |
|
- **Model type:** Diffusion-based text-to-image generative model |
|
- **License:** [OpenRAIL-M CreativeML](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/LICENSE.md) |
|
- **Model Description:** This is a model that can be used to generate and modify images based on text prompts. It is a [Latent Diffusion Model](https://arxiv.org/abs/2112.10752) that uses two fixed, pretrained text encoders ([OpenCLIP-ViT/G](https://github.com/mlfoundations/open_clip) and [CLIP-ViT/L](https://github.com/openai/CLIP/tree/main)). |
|
- **Resources for more information:** [GitHub Repository](https://github.com/Stability-AI/generative-models) [SDXL paper on arXiv](https://arxiv.org/abs/2307.01952). |
|
|
|
### Model Sources |
|
|
|
- **Repository:** https://github.com/Stability-AI/generative-models |
|
- **Demo:** https://clipdrop.co/stable-diffusion |
|
|
|
|
|
## Evaluation |
|
![comparison](comparison.png) |
|
The chart above evaluates user preference for SDXL (with and without refinement) over SDXL 0.9 and Stable Diffusion 1.5 and 2.1. |
|
The SDXL base model performs significantly better than the previous variants, and the model combined with the refinement module achieves the best overall performance. |
|
|
|
|
|
### 🧨 Diffusers |
|
|
|
Make sure to upgrade diffusers to >= 0.18.0: |
|
``` |
|
pip install diffusers --upgrade |
|
``` |
|
|
|
In addition make sure to install `transformers`, `safetensors`, `accelerate` as well as the invisible watermark: |
|
``` |
|
pip install invisible_watermark transformers accelerate safetensors |
|
``` |
|
|
|
You can use the model then as follows |
|
```py |
|
from diffusers import DiffusionPipeline |
|
import torch |
|
|
|
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-0.9", torch_dtype=torch.float16, use_safetensors=True, variant="fp16") |
|
pipe.to("cuda") |
|
|
|
# if using torch < 2.0 |
|
# pipe.enable_xformers_memory_efficient_attention() |
|
|
|
prompt = "An astronaut riding a green horse" |
|
|
|
images = pipe(prompt=prompt).images[0] |
|
``` |
|
|
|
When using `torch >= 2.0`, you can improve the inference speed by 20-30% with torch.compile. Simple wrap the unet with torch compile before running the pipeline: |
|
```py |
|
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) |
|
``` |
|
|
|
If you are limited by GPU VRAM, you can enable *cpu offloading* by calling `pipe.enable_model_cpu_offload` |
|
instead of `.to("cuda")`: |
|
|
|
```diff |
|
- pipe.to("cuda") |
|
+ pipe.enable_model_cpu_offload() |
|
``` |
|
|
|
|
|
## Uses |
|
|
|
### Direct Use |
|
|
|
The model is intended for research purposes only. Possible research areas and tasks include |
|
|
|
- Generation of artworks and use in design and other artistic processes. |
|
- Applications in educational or creative tools. |
|
- Research on generative models. |
|
- Safe deployment of models which have the potential to generate harmful content. |
|
- Probing and understanding the limitations and biases of generative models. |
|
|
|
Excluded uses are described below. |
|
|
|
### Out-of-Scope Use |
|
|
|
The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model. |
|
|
|
## Limitations and Bias |
|
|
|
### Limitations |
|
|
|
- The model does not achieve perfect photorealism |
|
- The model cannot render legible text |
|
- The model struggles with more difficult tasks which involve compositionality, such as rendering an image corresponding to “A red cube on top of a blue sphere” |
|
- Faces and people in general may not be generated properly. |
|
- The autoencoding part of the model is lossy. |
|
|
|
### Bias |
|
While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases. |
|
|
|
|