Commit
•
ea751d9
1
Parent(s):
a3d9d34
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,84 @@
|
|
1 |
---
|
2 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
tags:
|
4 |
+
- stable-diffusion
|
5 |
+
- stable-diffusion-diffusers
|
6 |
+
- text-to-image
|
7 |
+
inference: false
|
8 |
---
|
9 |
+
# Improved Autoencoders
|
10 |
+
|
11 |
+
## Utilizing
|
12 |
+
These weights are intended to be used with the [🧨 diffusers library](https://github.com/huggingface/diffusers). If you are looking for the model to use with the original [CompVis Stable Diffusion codebase](https://github.com/CompVis/stable-diffusion), [come here](https://huggingface.co/CompVis/stabilityai/sd-vae-ft-ema-original).
|
13 |
+
|
14 |
+
#### How to use with 🧨 diffusers
|
15 |
+
You can integrate this fine-tuned VAE decoder to your existing `diffusers` workflows, by including a `vae` argument to the `StableDiffusionPipeline`
|
16 |
+
```py
|
17 |
+
from diffusers.models import AutoencoderKL
|
18 |
+
from diffusers import StableDiffusionPipeline
|
19 |
+
|
20 |
+
model = "CompVis/stable-diffusion-v1-4"
|
21 |
+
vae = AutoencoderKL("stabilityai/sd-vae-ft-mse")
|
22 |
+
pipe = StableDiffusionPipeline(model, vae=vae)
|
23 |
+
```
|
24 |
+
|
25 |
+
## Decoder Finetuning
|
26 |
+
We publish two kl-f8 autoencoder versions, finetuned from the original [kl-f8 autoencoder](https://github.com/CompVis/latent-diffusion#pretrained-autoencoding-models).
|
27 |
+
The first, _ft-EMA_, was resumed from the original checkpoint, trained for 313198 steps and uses EMA weights.
|
28 |
+
The second, _ft-MSE_, was resumed from _ft-EMA_ and uses EMA weights and was trained for another 280k steps using a re-weighted loss, with more emphasis
|
29 |
+
on MSE reconstruction (producing somewhat ``smoother'' outputs).
|
30 |
+
To keep compatibility with existing models, only the decoder part was finetuned; the checkpoints can be used as a drop-in replacement for the existing autoencoder.
|
31 |
+
|
32 |
+
_Original kl-f8 VAE vs f8-ft-EMA vs f8-ft-MSE_
|
33 |
+
|
34 |
+
## Evaluation
|
35 |
+
### COCO 2017 (256x256, val, 5000 images)
|
36 |
+
| Model | train steps | rFID | PSNR | SSIM | PSIM | Link | Comments
|
37 |
+
|----------|---------|------|--------------|---------------|---------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
|
38 |
+
| | | | | | | | |
|
39 |
+
| original | 246803 | 4.99 | 23.4 +/- 3.8 | 0.69 +/- 0.14 | 1.01 +/- 0.28 | https://ommer-lab.com/files/latent-diffusion/kl-f8.zip | as used in SD |
|
40 |
+
| ft-EMA | 560001 | 4.42 | 23.8 +/- 3.9 | 0.69 +/- 0.13 | 0.96 +/- 0.27 | https://huggingface.co/stabilityai/sd-vae-ft-ema-original/resolve/main/vae-ft-ema-560000-ema-pruned.ckpt | slightly better overall, with EMA |
|
41 |
+
| ft-MSE | 840001 | 4.70 | 24.5 +/- 3.7 | 0.71 +/- 0.13 | 0.92 +/- 0.27 | https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.ckpt | resumed with EMA from ft-EMA, emphasis on MSE (rec. loss = MSE + 0.1 * LPIPS), smoother outputs |
|
42 |
+
|
43 |
+
|
44 |
+
### LAION-Aesthetics 5+ (256x256, subset, 10000 images)
|
45 |
+
| Model | train steps | rFID | PSNR | SSIM | PSIM | Link | Comments
|
46 |
+
|----------|-----------|------|--------------|---------------|---------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
|
47 |
+
| | | | | | | | |
|
48 |
+
| original | 246803 | 2.61 | 26.0 +/- 4.4 | 0.81 +/- 0.12 | 0.75 +/- 0.36 | https://ommer-lab.com/files/latent-diffusion/kl-f8.zip | as used in SD |
|
49 |
+
| ft-EMA | 560001 | 1.77 | 26.7 +/- 4.8 | 0.82 +/- 0.12 | 0.67 +/- 0.34 | https://huggingface.co/stabilityai/sd-vae-ft-ema-original/resolve/main/vae-ft-ema-560000-ema-pruned.ckpt | slightly better overall, with EMA |
|
50 |
+
| ft-MSE | 840001 | 1.88 | 27.3 +/- 4.7 | 0.83 +/- 0.11 | 0.65 +/- 0.34 | https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.ckpt | resumed with EMA from ft-EMA, emphasis on MSE (rec. loss = MSE + 0.1 * LPIPS), smoother outputs |
|
51 |
+
|
52 |
+
|
53 |
+
### Visual
|
54 |
+
_Visualization of reconstructions on 256x256 images from the COCO2017 validation dataset._
|
55 |
+
|
56 |
+
<p align="center">
|
57 |
+
<br>
|
58 |
+
<b>
|
59 |
+
256x256: ft-EMA (left), ft-MSE (middle), original (right)</b>
|
60 |
+
</p>
|
61 |
+
|
62 |
+
<p align="center">
|
63 |
+
<img src=https://huggingface.co/stabilityai/stable-diffusion-decoder-finetune/resolve/main/eval/ae-decoder-tuning-reconstructions/merged/00025_merged.png />
|
64 |
+
</p>
|
65 |
+
|
66 |
+
<p align="center">
|
67 |
+
<img src=https://huggingface.co/stabilityai/stable-diffusion-decoder-finetune/resolve/main/eval/ae-decoder-tuning-reconstructions/merged/00011_merged.png />
|
68 |
+
</p>
|
69 |
+
|
70 |
+
<p align="center">
|
71 |
+
<img src=https://huggingface.co/stabilityai/stable-diffusion-decoder-finetune/resolve/main/eval/ae-decoder-tuning-reconstructions/merged/00037_merged.png />
|
72 |
+
</p>
|
73 |
+
|
74 |
+
<p align="center">
|
75 |
+
<img src=https://huggingface.co/stabilityai/stable-diffusion-decoder-finetune/resolve/main/eval/ae-decoder-tuning-reconstructions/merged/00043_merged.png />
|
76 |
+
</p>
|
77 |
+
|
78 |
+
<p align="center">
|
79 |
+
<img src=https://huggingface.co/stabilityai/stable-diffusion-decoder-finetune/resolve/main/eval/ae-decoder-tuning-reconstructions/merged/00053_merged.png />
|
80 |
+
</p>
|
81 |
+
|
82 |
+
<p align="center">
|
83 |
+
<img src=https://huggingface.co/stabilityai/stable-diffusion-decoder-finetune/resolve/main/eval/ae-decoder-tuning-reconstructions/merged/00029_merged.png />
|
84 |
+
</p>
|