japanese-stablelm-instruct-alpha-7b-v2 / configuration_japanese_stablelm_alpha.py
mkshing's picture
initial commit
254bcbe
raw
history blame
5.69 kB
# coding=utf-8
# Copyright 2023 Stability and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" JapaneseStableLMAlpha model configuration"""
from transformers import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
STABLE_LM_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
class JapaneseStableLMAlphaConfig(PretrainedConfig):
r"""
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 65536):
Vocabulary size of the JapaneseStableLMAlphaModel. Defines the number of different tokens that
can be represented by the `inputs_ids` passed when calling [`JapaneseStableLMAlphaModel`].
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the decoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer decoder.
intermediate_size (`int`, *optional*, defaults to 16384):
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer decoder.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string).
rotary_pct (`float`, *optional*, defaults to 0.25):
Percentage of hidden dimensions to allocate to rotary embeddings.
rotary_emb_base (`int`, *optional*, defaults to 10000)
Base for computing rotary embeddings frequency.
rotary_scale_base (`int`, *optional*, defaults to 512)
Base `scale` for computing XPos rotary embeddings scale.
classifier_dropout (`float`, *optional*, defaults to 0.1):
Argument used when doing token classification, used in the model
[`StableLMForTokenClassification`]. The dropout ratio for the hidden layer.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with.
Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
initializer_range (`float`, *optional*, defaults to 1e-5):
The standard deviation of the truncated_normal_initializer for initializing
all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions
(not used by all models). Only relevant if `config.is_decoder=True`.
use_parallel_residual (`bool`, *optional*, defaults to `True`):
Whether to use a "parallel" formulation in each Transformer layer,
which can provide a slight training speedup at large scales.
Example:
```python
>>> from transformers import JapaneseStableLMAlphaConfig, JapaneseStableLMAlphaModel
>>> # Initializing a JapaneseStableLMAlpha style configuration
>>> configuration = JapaneseStableLMAlphaConfig()
>>> # Initializing a model (with random weights) from the style configuration
>>> model = JapaneseStableLMAlphaModel(configuration) # doctest: +SKIP
>>> # Accessing the model configuration
>>> configuration = model.config # doctest: +SKIP
```"""
def __init__(
self,
vocab_size=65536,
hidden_size=4096,
num_hidden_layers=32,
num_attention_heads=32,
hidden_act="silu",
rotary_pct=0.25,
rotary_emb_base=10000,
rotary_scale_base=512,
classifier_dropout=0.1,
max_position_embeddings=2048,
initializer_range=0.02,
layer_norm_eps=1e-5,
use_cache=True,
bos_token_id=3,
eos_token_id=3,
tie_word_embeddings=False,
use_parallel_residual=True,
use_bias_in_mlp=True,
**kwargs,
):
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.rotary_pct = rotary_pct
self.rotary_emb_base = rotary_emb_base
self.rotary_scale_base = rotary_scale_base
self.classifier_dropout = classifier_dropout
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.use_cache = use_cache
self.tie_word_embeddings = tie_word_embeddings
self.use_parallel_residual = use_parallel_residual
self.use_bias_in_mlp = use_bias_in_mlp