st3rl4nce's picture
update model card README.md
0522ce9
|
raw
history blame
3.24 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - amazon_reviews_multi
metrics:
  - rouge
model-index:
  - name: mt5-small-finetuned-amazon-en-es
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: amazon_reviews_multi
          type: amazon_reviews_multi
          config: en
          split: validation
          args: en
        metrics:
          - name: Rouge1
            type: rouge
            value: 19.7803

mt5-small-finetuned-amazon-en-es

This model is a fine-tuned version of google/mt5-small on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set:

  • Loss: 3.3776
  • Rouge1: 19.7803
  • Rouge2: 11.1015
  • Rougel: 19.2549
  • Rougelsum: 19.0799

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.6e-05
  • train_batch_size: 12
  • eval_batch_size: 12
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 16

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
2.7004 1.0 514 3.2936 17.2056 9.3595 17.2163 16.8991
2.6472 2.0 1028 3.2995 17.4081 9.9623 17.3287 16.9701
2.6173 3.0 1542 3.3039 17.9581 9.5537 17.7729 17.6022
2.5812 4.0 2056 3.3057 17.438 8.8331 17.1341 17.0436
2.5446 5.0 2570 3.3316 18.6351 10.4851 18.5086 18.2872
2.5133 6.0 3084 3.3255 19.1331 10.3396 18.8557 18.6551
2.4885 7.0 3598 3.3522 18.998 10.1323 18.709 18.5662
2.464 8.0 4112 3.3314 18.8978 10.1726 18.5683 18.3049
2.4431 9.0 4626 3.3508 18.777 10.3018 18.5103 18.2069
2.4092 10.0 5140 3.3520 19.3359 11.2355 19.0265 18.7083
2.4082 11.0 5654 3.3534 19.3633 11.2181 19.0465 18.7726
2.3815 12.0 6168 3.3687 18.7702 10.395 18.5383 18.2271
2.3706 13.0 6682 3.3716 19.0868 10.6534 18.791 18.5447
2.3628 14.0 7196 3.3756 19.1222 10.9791 18.6601 18.5131
2.3518 15.0 7710 3.3831 19.9227 11.0903 19.4883 19.2418
2.3497 16.0 8224 3.3776 19.7803 11.1015 19.2549 19.0799

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.0.0+cu118
  • Datasets 2.11.0
  • Tokenizers 0.13.3