TRASHPRED / app1.py
sriram7737's picture
Upload 2539 files
2894987 verified
import os
import shutil
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision.models as models
from torchvision import datasets
from torch.utils.data import DataLoader
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.metrics import confusion_matrix, classification_report
# Define dataset paths
structured_dataset_path = "C:\\Users\\srira\\OneDrive\\Desktop\\AI_PROJ\\structured_data"
train_dir = os.path.join(structured_dataset_path, "train")
val_dir = os.path.join(structured_dataset_path, "val")
test_dir = os.path.join(structured_dataset_path, "test")
# Define data augmentation transformations
train_transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(20),
transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
val_test_transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
# Load datasets
train_dataset = datasets.ImageFolder(root=train_dir, transform=train_transform)
val_dataset = datasets.ImageFolder(root=val_dir, transform=val_test_transform)
test_dataset = datasets.ImageFolder(root=test_dir, transform=val_test_transform)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False)
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)
# Load pretrained model
model = models.resnet50(pretrained=True)
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, len(train_dataset.classes))
# Define loss function and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.1) # Reduce LR every 5 epochs
def train_model(model, train_loader, val_loader, criterion, optimizer, scheduler, num_epochs=10):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
for epoch in range(num_epochs):
model.train()
running_loss = 0.0
correct = 0
total = 0
for images, labels in train_loader:
images, labels = images.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
_, predicted = outputs.max(1)
total += labels.size(0)
correct += predicted.eq(labels).sum().item()
scheduler.step()
train_acc = 100 * correct / total
val_acc = evaluate_model(model, val_loader)
print(f"Epoch {epoch+1}/{num_epochs}, Loss: {running_loss/len(train_loader):.4f}, Train Acc: {train_acc:.2f}%, Val Acc: {val_acc:.2f}%")
return model
def evaluate_model(model, test_loader):
model.eval()
correct = 0
total = 0
all_preds = []
all_labels = []
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
with torch.no_grad():
for images, labels in test_loader:
images, labels = images.to(device), labels.to(device)
outputs = model(images)
_, predicted = outputs.max(1)
total += labels.size(0)
correct += predicted.eq(labels).sum().item()
all_preds.extend(predicted.cpu().numpy())
all_labels.extend(labels.cpu().numpy())
cm = confusion_matrix(all_labels, all_preds)
plt.figure(figsize=(8, 6))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=test_dataset.classes, yticklabels=test_dataset.classes)
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.title('Confusion Matrix')
plt.show()
print("Classification Report:")
print(classification_report(all_labels, all_preds, target_names=test_dataset.classes))
return 100 * correct / total
# Train the model with augmentation and learning rate scheduling
trained_model = train_model(model, train_loader, val_loader, criterion, optimizer, scheduler, num_epochs=10)
# Save the model
torch.save(trained_model.state_dict(), "smart_recycling_model1.pth")
print ("Model saved successfully!")