sraghavanvenkat0714's picture
Model save
9f0d6d5 verified
metadata
library_name: transformers
license: mit
base_model: facebook/bart-large-cnn
tags:
  - generated_from_trainer
datasets:
  - samsum
metrics:
  - rouge
model-index:
  - name: bart-large-cnn-samsum
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: samsum
          type: samsum
          config: samsum
          split: validation
          args: samsum
        metrics:
          - name: Rouge1
            type: rouge
            value: 0.4139

bart-large-cnn-samsum

This model is a fine-tuned version of facebook/bart-large-cnn on the samsum dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3028
  • Rouge1: 0.4139
  • Rouge2: 0.2105
  • Rougel: 0.3191
  • Rougelsum: 0.3193
  • Gen Len: 60.0134

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
2.9128 0.4344 100 0.3621 0.3984 0.1999 0.3038 0.3038 60.8888
0.3205 0.8689 200 0.3097 0.4102 0.2138 0.3186 0.3188 60.6345
0.2702 1.3033 300 0.3041 0.4159 0.211 0.3179 0.3179 60.077
0.251 1.7377 400 0.2964 0.4191 0.2154 0.3229 0.3233 59.9022
0.2262 2.1721 500 0.3055 0.4135 0.208 0.3178 0.3179 60.4132
0.1906 2.6066 600 0.3028 0.4139 0.2105 0.3191 0.3193 60.0134

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1