|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: facebook/bart-large-cnn |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- samsum |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: bart-large-cnn-samsum |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: samsum |
|
type: samsum |
|
config: samsum |
|
split: validation |
|
args: samsum |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 0.4139 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bart-large-cnn-samsum |
|
|
|
This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on the samsum dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3028 |
|
- Rouge1: 0.4139 |
|
- Rouge2: 0.2105 |
|
- Rougel: 0.3191 |
|
- Rougelsum: 0.3193 |
|
- Gen Len: 60.0134 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 16 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 200 |
|
- num_epochs: 3 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:------:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| 2.9128 | 0.4344 | 100 | 0.3621 | 0.3984 | 0.1999 | 0.3038 | 0.3038 | 60.8888 | |
|
| 0.3205 | 0.8689 | 200 | 0.3097 | 0.4102 | 0.2138 | 0.3186 | 0.3188 | 60.6345 | |
|
| 0.2702 | 1.3033 | 300 | 0.3041 | 0.4159 | 0.211 | 0.3179 | 0.3179 | 60.077 | |
|
| 0.251 | 1.7377 | 400 | 0.2964 | 0.4191 | 0.2154 | 0.3229 | 0.3233 | 59.9022 | |
|
| 0.2262 | 2.1721 | 500 | 0.3055 | 0.4135 | 0.208 | 0.3178 | 0.3179 | 60.4132 | |
|
| 0.1906 | 2.6066 | 600 | 0.3028 | 0.4139 | 0.2105 | 0.3191 | 0.3193 | 60.0134 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.1+cu121 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.19.1 |
|
|