sraghavanvenkat0714's picture
Model save
9f0d6d5 verified
|
raw
history blame
2.52 kB
---
library_name: transformers
license: mit
base_model: facebook/bart-large-cnn
tags:
- generated_from_trainer
datasets:
- samsum
metrics:
- rouge
model-index:
- name: bart-large-cnn-samsum
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: samsum
type: samsum
config: samsum
split: validation
args: samsum
metrics:
- name: Rouge1
type: rouge
value: 0.4139
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-large-cnn-samsum
This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on the samsum dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3028
- Rouge1: 0.4139
- Rouge2: 0.2105
- Rougel: 0.3191
- Rougelsum: 0.3193
- Gen Len: 60.0134
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:------:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 2.9128 | 0.4344 | 100 | 0.3621 | 0.3984 | 0.1999 | 0.3038 | 0.3038 | 60.8888 |
| 0.3205 | 0.8689 | 200 | 0.3097 | 0.4102 | 0.2138 | 0.3186 | 0.3188 | 60.6345 |
| 0.2702 | 1.3033 | 300 | 0.3041 | 0.4159 | 0.211 | 0.3179 | 0.3179 | 60.077 |
| 0.251 | 1.7377 | 400 | 0.2964 | 0.4191 | 0.2154 | 0.3229 | 0.3233 | 59.9022 |
| 0.2262 | 2.1721 | 500 | 0.3055 | 0.4135 | 0.208 | 0.3178 | 0.3179 | 60.4132 |
| 0.1906 | 2.6066 | 600 | 0.3028 | 0.4139 | 0.2105 | 0.3191 | 0.3193 | 60.0134 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1