MoE_ECGFormer / models /MoE_ECGFormer.py
splendor1811's picture
Upload 14 files
bcf646b verified
import torch
from torch import nn
class MoE_ECGFormer(nn.Module):
def __init__(self, configs, hparams):
super().__init__()
filter_sizes = [5, 9, 11]
self.conv1 = nn.Conv1d(configs.input_channels, configs.mid_channels, kernel_size=filter_sizes[0],
stride=configs.stride, bias=False, padding=(filter_sizes[0] // 2))
self.conv2 = nn.Conv1d(configs.input_channels, configs.mid_channels, kernel_size=filter_sizes[1],
stride=configs.stride, bias=False, padding=(filter_sizes[1] // 2))
self.conv3 = nn.Conv1d(configs.input_channels, configs.mid_channels, kernel_size=filter_sizes[2],
stride=configs.stride, bias=False, padding=(filter_sizes[2] // 2))
self.bn = nn.BatchNorm1d(configs.mid_channels)
self.relu = nn.ReLU()
self.maxpool = nn.MaxPool1d(kernel_size=2, stride=2, padding=1)
self.dropout = nn.Dropout(configs.dropout)
self.conv_block2 = nn.Sequential(
nn.Conv1d(configs.mid_channels, configs.mid_channels * 2, kernel_size=8, stride=1, bias=False,
padding=4),
nn.BatchNorm1d(configs.mid_channels * 2),
nn.ReLU(),
nn.MaxPool1d(kernel_size=2, stride=2, padding=1)
)
self.conv_block3 = nn.Sequential(
nn.Conv1d(configs.mid_channels * 2, configs.final_out_channels, kernel_size=8, stride=1, bias=False,
padding=4),
nn.BatchNorm1d(configs.final_out_channels),
nn.ReLU(),
nn.MaxPool1d(kernel_size=2, stride=2, padding=1),
)
self.inplanes = 128
self.crm = self._make_layer(SEBasicBlock, 128, 3)
# Transformer_layer
self.encoder_layer = nn.TransformerEncoderLayer(d_model=configs.trans_dim,
nhead=configs.num_heads,
batch_first=True)
self.transformer_encoder = nn.TransformerEncoder(self.encoder_layer, num_layers=3)
self.aap = nn.AdaptiveAvgPool1d(1)
self.clf = nn.Linear(hparams['feature_dim'], configs.num_classes)
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv1d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm1d(planes * block.expansion),
)
layers = [block(self.inplanes, planes, stride, downsample)]
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x_in):
# Multi-scale Convolutions
x1 = self.conv1(x_in)
x2 = self.conv2(x_in)
x3 = self.conv3(x_in)
x_concat = torch.mean(torch.stack([x1, x2, x3], dim=2), dim=2)
x_concat = self.dropout(self.maxpool(self.relu(self.bn(x_concat))))
x = self.conv_block2(x_concat)
x = self.conv_block3(x)
# Channel Recalibration Module
x = self.crm(x)
# Bidirectional MoE Transformer
x1 = self.transformer_encoder(x)
x2 = self.transformer_encoder(torch.flip(x, [2]))
x = x1 + x2
x = self.aap(x)
x_flat = x.reshape(x.size(0), -1)
x_out = self.clf(x_flat)
return x_out
class SELayer(nn.Module):
def __init__(self, channel, reduction=4):
super(SELayer, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool1d(1)
self.fc = nn.Sequential(
nn.Linear(channel, channel // reduction, bias=False),
nn.ReLU(inplace=True),
nn.Linear(channel // reduction, channel, bias=False),
nn.Sigmoid()
)
def forward(self, x):
b, c, _ = x.size()
y = self.avg_pool(x).view(b, c)
y = self.fc(y).view(b, c, 1)
return x * y.expand_as(x)
class SEBasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
base_width=64, dilation=1, norm_layer=None,
*, reduction=4):
super(SEBasicBlock, self).__init__()
self.conv1 = nn.Conv1d(inplanes, planes, stride)
self.bn1 = nn.BatchNorm1d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv1d(planes, planes, 1)
self.bn2 = nn.BatchNorm1d(planes)
self.se = SELayer(planes, reduction)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.se(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out