metadata
language: en
thumbnail: null
tags:
- Source Separation
- Speech Separation
- Audio Source Separation
- WHAM!
- SepFormer
- Transformer
license: apache-2.0
datasets:
- WHAM!
metrics:
- SI-SNRi
- SDRi
SepFormer trained on WHAM!
This repository provides all the necessary tools to perform audio source separation with a SepFormer model, implemented with SpeechBrain, and pretrained on WHAM! dataset, which is basically a version of WSJ0-Mix dataset with environmental noise. For a better experience we encourage you to learn more about SpeechBrain. The given model performance is 16.3 dB SI-SNRi on the test set of WHAM! dataset.
Release | Test-Set SI-SNRi | Test-Set SDRi |
---|---|---|
09-03-21 | 16.3 dB | 16.7 dB |
Install SpeechBrain
First of all, please install SpeechBrain with the following command:
pip install speechbrain
Please notice that we encourage you to read our tutorials and learn more about SpeechBrain.
Perform source separation on your own audio file
from speechbrain.pretrained import separator
import torchaudio
model = separator.from_hparams(source="speechbrain/sepformer-wham")
mix, fs = torchaudio.load("yourspeechbrainpath/samples/audio_samples/test_mixture.wav")
est_sources = model.separate(mix)
est_sources = est_sources / est_sources.max(dim=1, keepdim=True)[0]
torchaudio.save("source1hat.wav", est_sources[:, :, 0].detach().cpu(), 8000)
torchaudio.save("source2hat.wav", est_sources[:, :, 1].detach().cpu(), 8000)
Referencing SpeechBrain
@misc{SB2021,
author = {Ravanelli, Mirco and Parcollet, Titouan and Rouhe, Aku and Plantinga, Peter and Rastorgueva, Elena and Lugosch, Loren and Dawalatabad, Nauman and Ju-Chieh, Chou and Heba, Abdel and Grondin, Francois and Aris, William and Liao, Chien-Feng and Cornell, Samuele and Yeh, Sung-Lin and Na, Hwidong and Gao, Yan and Fu, Szu-Wei and Subakan, Cem and De Mori, Renato and Bengio, Yoshua },
title = {SpeechBrain},
year = {2021},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/speechbrain/speechbrain}},
}
Referencing SepFormer
@inproceedings{subakan2021attention,
title={Attention is All You Need in Speech Separation},
author={Cem Subakan and Mirco Ravanelli and Samuele Cornell and Mirko Bronzi and Jianyuan Zhong},
year={2021},
booktitle={ICASSP 2021}
}