poonehmousavi
commited on
Commit
•
1cd8cde
1
Parent(s):
e631cd7
Upload 4 files
Browse files- README.md +132 -0
- custom_interface.py +127 -0
- hparams.yaml +77 -0
- whisper.ckpt +3 -0
README.md
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- hi
|
4 |
+
thumbnail: null
|
5 |
+
pipeline_tag: automatic-speech-recognition
|
6 |
+
tags:
|
7 |
+
- whisper
|
8 |
+
- pytorch
|
9 |
+
- speechbrain
|
10 |
+
- Transformer
|
11 |
+
- hf-asr-leaderboard
|
12 |
+
license: apache-2.0
|
13 |
+
datasets:
|
14 |
+
- commonvoice
|
15 |
+
metrics:
|
16 |
+
- wer
|
17 |
+
- cer
|
18 |
+
model-index:
|
19 |
+
- name: asr-whisper-large-v2-commonvoice-hi
|
20 |
+
results:
|
21 |
+
- task:
|
22 |
+
name: Automatic Speech Recognition
|
23 |
+
type: automatic-speech-recognition
|
24 |
+
dataset:
|
25 |
+
name: CommonVoice 10.0 (Hindi)
|
26 |
+
type: mozilla-foundation/common_voice_10_0
|
27 |
+
config: hi
|
28 |
+
split: test
|
29 |
+
args:
|
30 |
+
language: hi
|
31 |
+
metrics:
|
32 |
+
- name: Test WER
|
33 |
+
type: wer
|
34 |
+
value: '15.27'
|
35 |
+
---
|
36 |
+
|
37 |
+
<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
|
38 |
+
<br/><br/>
|
39 |
+
|
40 |
+
# whisper large-v2 fine-tuned on CommonVoice Hindi
|
41 |
+
|
42 |
+
This repository provides all the necessary tools to perform automatic speech
|
43 |
+
recognition from an end-to-end whisper model fine-tuned on CommonVoice (Hindi Language) within
|
44 |
+
SpeechBrain. For a better experience, we encourage you to learn more about
|
45 |
+
[SpeechBrain](https://speechbrain.github.io).
|
46 |
+
|
47 |
+
The performance of the model is the following:
|
48 |
+
|
49 |
+
| Release | Test CER | Test WER | GPUs |
|
50 |
+
|:-------------:|:--------------:|:--------------:| :--------:|
|
51 |
+
| 01-02-23 | 7.00 | 15.27 | 1xV100 16GB |
|
52 |
+
|
53 |
+
## Pipeline description
|
54 |
+
|
55 |
+
This ASR system is composed of whisper encoder-decoder blocks:
|
56 |
+
- The pretrained whisper-large-v2 encoder is frozen.
|
57 |
+
- The pretrained Whisper tokenizer is used.
|
58 |
+
- A pretrained Whisper-large-v2 decoder ([openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2)) is finetuned on CommonVoice MN.
|
59 |
+
The obtained final acoustic representation is given to the greedy decoder.
|
60 |
+
|
61 |
+
The system is trained with recordings sampled at 16kHz (single channel).
|
62 |
+
The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *transcribe_file* if needed.
|
63 |
+
|
64 |
+
## Install SpeechBrain
|
65 |
+
|
66 |
+
First of all, please install tranformers and SpeechBrain with the following command:
|
67 |
+
|
68 |
+
```
|
69 |
+
pip install speechbrain transformers
|
70 |
+
```
|
71 |
+
|
72 |
+
Please notice that we encourage you to read our tutorials and learn more about
|
73 |
+
[SpeechBrain](https://speechbrain.github.io).
|
74 |
+
|
75 |
+
### Transcribing your own audio files (in Hindi)
|
76 |
+
|
77 |
+
```python
|
78 |
+
|
79 |
+
from speechbrain.pretrained.interfaces import foreign_class
|
80 |
+
|
81 |
+
asr_model = foreign_class(source="speechbrain/asr-whisper-large-v2-commonvoice-hi", pymodule_file="custom_interface.py", classname="WhisperASR", hparams_file='hparams.yaml', savedir="pretrained_models/asr-whisper-large-v2-commonvoice-hi")
|
82 |
+
asr_model.transcribe_file('speechbrain/asr-whisper-large-v2-commonvoice-hi/example-hi.wav')
|
83 |
+
|
84 |
+
|
85 |
+
```
|
86 |
+
### Inference on GPU
|
87 |
+
To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method.
|
88 |
+
|
89 |
+
### Training
|
90 |
+
The model was trained with SpeechBrain.
|
91 |
+
To train it from scratch follow these steps:
|
92 |
+
1. Clone SpeechBrain:
|
93 |
+
```bash
|
94 |
+
git clone https://github.com/speechbrain/speechbrain/
|
95 |
+
```
|
96 |
+
2. Install it:
|
97 |
+
```bash
|
98 |
+
cd speechbrain
|
99 |
+
pip install -r requirements.txt
|
100 |
+
pip install -e .
|
101 |
+
```
|
102 |
+
|
103 |
+
3. Run Training:
|
104 |
+
```bash
|
105 |
+
cd recipes/CommonVoice/ASR/transformer/
|
106 |
+
python train_with_whisper.py hparams/train_hi_hf_whisper.yaml --data_folder=your_data_folder
|
107 |
+
```
|
108 |
+
|
109 |
+
You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/11PKCsyIE703mmDv6n6n_UnD0bUgMPbg_?usp=share_link).
|
110 |
+
|
111 |
+
### Limitations
|
112 |
+
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.
|
113 |
+
|
114 |
+
#### Referencing SpeechBrain
|
115 |
+
|
116 |
+
```
|
117 |
+
@misc{SB2021,
|
118 |
+
author = {Ravanelli, Mirco and Parcollet, Titouan and Rouhe, Aku and Plantinga, Peter and Rastorgueva, Elena and Lugosch, Loren and Dawalatabad, Nauman and Ju-Chieh, Chou and Heba, Abdel and Grondin, Francois and Aris, William and Liao, Chien-Feng and Cornell, Samuele and Yeh, Sung-Lin and Na, Hwidong and Gao, Yan and Fu, Szu-Wei and Subakan, Cem and De Mori, Renato and Bengio, Yoshua },
|
119 |
+
title = {SpeechBrain},
|
120 |
+
year = {2021},
|
121 |
+
publisher = {GitHub},
|
122 |
+
journal = {GitHub repository},
|
123 |
+
howpublished = {\\\\url{https://github.com/speechbrain/speechbrain}},
|
124 |
+
}
|
125 |
+
```
|
126 |
+
|
127 |
+
#### About SpeechBrain
|
128 |
+
SpeechBrain is an open-source and all-in-one speech toolkit. It is designed to be simple, extremely flexible, and user-friendly. Competitive or state-of-the-art performance is obtained in various domains.
|
129 |
+
|
130 |
+
Website: https://speechbrain.github.io/
|
131 |
+
|
132 |
+
GitHub: https://github.com/speechbrain/speechbrain
|
custom_interface.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from speechbrain.pretrained import Pretrained
|
3 |
+
|
4 |
+
class WhisperASR(Pretrained):
|
5 |
+
"""A ready-to-use Whisper ASR model
|
6 |
+
|
7 |
+
The class can be used to run only the encoder (encode()) to run the entire encoder-decoder whisper model
|
8 |
+
(transcribe()) to transcribe speech. The given YAML must contains the fields
|
9 |
+
specified in the *_NEEDED[] lists.
|
10 |
+
|
11 |
+
Example
|
12 |
+
-------
|
13 |
+
>>> from speechbrain.pretrained.interfaces import foreign_class
|
14 |
+
>>> tmpdir = getfixture("tmpdir")
|
15 |
+
>>> asr_model = foreign_class(source="hf",
|
16 |
+
... pymodule_file="custom_interface.py",
|
17 |
+
... classname="WhisperASR",
|
18 |
+
... hparams_file='hparams.yaml',
|
19 |
+
... savedir=tmpdir,
|
20 |
+
... )
|
21 |
+
>>> asr_model.transcribe_file("tests/samples/example2.wav")
|
22 |
+
"""
|
23 |
+
|
24 |
+
HPARAMS_NEEDED = ['language']
|
25 |
+
MODULES_NEEDED = ["whisper", "decoder"]
|
26 |
+
|
27 |
+
def __init__(self, *args, **kwargs):
|
28 |
+
super().__init__(*args, **kwargs)
|
29 |
+
self.tokenizer = self.hparams.whisper.tokenizer
|
30 |
+
self.tokenizer.set_prefix_tokens(self.hparams.language, "transcribe", False)
|
31 |
+
self.hparams.decoder.set_decoder_input_tokens(
|
32 |
+
self.tokenizer.prefix_tokens
|
33 |
+
)
|
34 |
+
|
35 |
+
def transcribe_file(self, path):
|
36 |
+
"""Transcribes the given audiofile into a sequence of words.
|
37 |
+
|
38 |
+
Arguments
|
39 |
+
---------
|
40 |
+
path : str
|
41 |
+
Path to audio file which to transcribe.
|
42 |
+
|
43 |
+
Returns
|
44 |
+
-------
|
45 |
+
str
|
46 |
+
The audiofile transcription produced by this ASR system.
|
47 |
+
"""
|
48 |
+
waveform = self.load_audio(path)
|
49 |
+
# Fake a batch:
|
50 |
+
batch = waveform.unsqueeze(0)
|
51 |
+
rel_length = torch.tensor([1.0])
|
52 |
+
predicted_words, predicted_tokens = self.transcribe_batch(
|
53 |
+
batch, rel_length
|
54 |
+
)
|
55 |
+
return predicted_words
|
56 |
+
|
57 |
+
def encode_batch(self, wavs, wav_lens):
|
58 |
+
"""Encodes the input audio into a sequence of hidden states
|
59 |
+
|
60 |
+
The waveforms should already be in the model's desired format.
|
61 |
+
You can call:
|
62 |
+
``normalized = EncoderDecoderASR.normalizer(signal, sample_rate)``
|
63 |
+
to get a correctly converted signal in most cases.
|
64 |
+
|
65 |
+
Arguments
|
66 |
+
---------
|
67 |
+
wavs : torch.tensor
|
68 |
+
Batch of waveforms [batch, time, channels].
|
69 |
+
wav_lens : torch.tensor
|
70 |
+
Lengths of the waveforms relative to the longest one in the
|
71 |
+
batch, tensor of shape [batch]. The longest one should have
|
72 |
+
relative length 1.0 and others len(waveform) / max_length.
|
73 |
+
Used for ignoring padding.
|
74 |
+
|
75 |
+
Returns
|
76 |
+
-------
|
77 |
+
torch.tensor
|
78 |
+
The encoded batch
|
79 |
+
"""
|
80 |
+
wavs = wavs.float()
|
81 |
+
wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device)
|
82 |
+
encoder_out = self.mods.whisper.forward_encoder(wavs)
|
83 |
+
return encoder_out
|
84 |
+
|
85 |
+
def transcribe_batch(self, wavs, wav_lens):
|
86 |
+
"""Transcribes the input audio into a sequence of words
|
87 |
+
|
88 |
+
The waveforms should already be in the model's desired format.
|
89 |
+
You can call:
|
90 |
+
``normalized = EncoderDecoderASR.normalizer(signal, sample_rate)``
|
91 |
+
to get a correctly converted signal in most cases.
|
92 |
+
|
93 |
+
Arguments
|
94 |
+
---------
|
95 |
+
wavs : torch.tensor
|
96 |
+
Batch of waveforms [batch, time, channels].
|
97 |
+
wav_lens : torch.tensor
|
98 |
+
Lengths of the waveforms relative to the longest one in the
|
99 |
+
batch, tensor of shape [batch]. The longest one should have
|
100 |
+
relative length 1.0 and others len(waveform) / max_length.
|
101 |
+
Used for ignoring padding.
|
102 |
+
|
103 |
+
Returns
|
104 |
+
-------
|
105 |
+
list
|
106 |
+
Each waveform in the batch transcribed.
|
107 |
+
tensor
|
108 |
+
Each predicted token id.
|
109 |
+
"""
|
110 |
+
with torch.no_grad():
|
111 |
+
wav_lens = wav_lens.to(self.device)
|
112 |
+
encoder_out = self.encode_batch(wavs, wav_lens)
|
113 |
+
predicted_tokens, scores = self.mods.decoder(encoder_out, wav_lens)
|
114 |
+
predicted_words = self.tokenizer.batch_decode(
|
115 |
+
predicted_tokens, skip_special_tokens=True)
|
116 |
+
if self.hparams.normalized_transcripts:
|
117 |
+
predicted_words = [
|
118 |
+
self.tokenizer._normalize(text).split(" ")
|
119 |
+
for text in predicted_words
|
120 |
+
]
|
121 |
+
|
122 |
+
|
123 |
+
return predicted_words, predicted_tokens
|
124 |
+
|
125 |
+
def forward(self, wavs, wav_lens):
|
126 |
+
"""Runs full transcription - note: no gradients through decoding"""
|
127 |
+
return self.transcribe_batch(wavs, wav_lens)
|
hparams.yaml
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ################################
|
2 |
+
# Model: Whisper (Encoder-Decoder) + NLL
|
3 |
+
# Augmentation: TimeDomainSpecAugment
|
4 |
+
# Authors: Pooneh Mousavi 2022
|
5 |
+
# ################################
|
6 |
+
|
7 |
+
|
8 |
+
# URL for the biggest Fairseq english whisper model.
|
9 |
+
whisper_hub: openai/whisper-large-v2
|
10 |
+
|
11 |
+
# Normalize inputs with
|
12 |
+
# the same normalization done in the paper. Refer to Appendix C for further information.
|
13 |
+
normalized_transcripts: True
|
14 |
+
|
15 |
+
|
16 |
+
language: hindi
|
17 |
+
|
18 |
+
auto_mix_prec: False
|
19 |
+
sample_rate: 16000
|
20 |
+
|
21 |
+
# These values are only used for the searchers.
|
22 |
+
# They needs to be hardcoded and should not be changed with Whisper.
|
23 |
+
# They are used as part of the searching process.
|
24 |
+
# The bos token of the searcher will be timestamp_index
|
25 |
+
# and will be concatenated with the bos, language and task tokens.
|
26 |
+
timestamp_index: 50363
|
27 |
+
eos_index: 50257
|
28 |
+
bos_index: 50258
|
29 |
+
|
30 |
+
# Decoding parameters
|
31 |
+
min_decode_ratio: 0.0
|
32 |
+
max_decode_ratio: 0.1
|
33 |
+
test_beam_size: 8
|
34 |
+
|
35 |
+
# Model parameters
|
36 |
+
freeze_whisper: True
|
37 |
+
freeze_encoder: True
|
38 |
+
|
39 |
+
|
40 |
+
|
41 |
+
whisper: !new:speechbrain.lobes.models.huggingface_whisper.HuggingFaceWhisper
|
42 |
+
source: !ref <whisper_hub>
|
43 |
+
freeze: !ref <freeze_whisper>
|
44 |
+
freeze_encoder: !ref <freeze_encoder>
|
45 |
+
save_path: whisper_checkpoints
|
46 |
+
encoder_only: False
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
decoder: !new:speechbrain.decoders.seq2seq.S2SWhisperGreedySearch
|
51 |
+
model: !ref <whisper>
|
52 |
+
bos_index: !ref <timestamp_index>
|
53 |
+
eos_index: !ref <eos_index>
|
54 |
+
min_decode_ratio: !ref <min_decode_ratio>
|
55 |
+
max_decode_ratio: !ref <max_decode_ratio>
|
56 |
+
|
57 |
+
# test_beam_searcher: !new:speechbrain.decoders.seq2seq.S2SWhisperBeamSearch
|
58 |
+
# module: [!ref <whisper>]
|
59 |
+
# bos_index: !ref <timestamp_index>
|
60 |
+
# eos_index: !ref <eos_index>
|
61 |
+
# min_decode_ratio: !ref <min_decode_ratio>
|
62 |
+
# max_decode_ratio: !ref <max_decode_ratio>
|
63 |
+
# beam_size: !ref <test_beam_size>
|
64 |
+
|
65 |
+
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
modules:
|
70 |
+
whisper: !ref <whisper>
|
71 |
+
decoder: !ref <decoder>
|
72 |
+
|
73 |
+
|
74 |
+
pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
|
75 |
+
loadables:
|
76 |
+
whisper: !ref <whisper>
|
77 |
+
|
whisper.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:65048b4f44c10e5645ac0a2f43c6086520491f98bf4fcb0711ebeb1fb5f20d09
|
3 |
+
size 6173767281
|