tomaarsen HF Staff commited on
Commit
7bd9ac6
·
verified ·
1 Parent(s): d8e85c2

Create train_script.py

Browse files
Files changed (1) hide show
  1. train_script.py +84 -0
train_script.py ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datasets import load_dataset
2
+ from sentence_transformers import (
3
+ SparseEncoder,
4
+ SparseEncoderTrainer,
5
+ SparseEncoderTrainingArguments,
6
+ SparseEncoderModelCardData,
7
+ )
8
+ from sentence_transformers.sparse_encoder.losses import SpladeLoss, SparseMultipleNegativesRankingLoss
9
+ from sentence_transformers.training_args import BatchSamplers
10
+ from sentence_transformers.sparse_encoder.evaluation import SparseNanoBEIREvaluator
11
+ from sentence_transformers.sparse_encoder.models import SpladePooling, MLMTransformer
12
+
13
+ # 1. Load a model to finetune with 2. (Optional) model card data
14
+ mlm_transformer = MLMTransformer("prajjwal1/bert-tiny")
15
+ splade_pooling = SpladePooling(pooling_strategy="max", word_embedding_dimension=mlm_transformer.get_sentence_embedding_dimension())
16
+
17
+ model = SparseEncoder(
18
+ modules=[mlm_transformer, splade_pooling],
19
+ model_card_data=SparseEncoderModelCardData(
20
+ language="en",
21
+ license="apache-2.0",
22
+ model_name="SPLADE BERT-tiny trained on Natural-Questions tuples",
23
+ )
24
+ )
25
+
26
+ # 3. Load a dataset to finetune on
27
+ full_dataset = load_dataset("sentence-transformers/natural-questions", split="train").select(range(100_000))
28
+ dataset_dict = full_dataset.train_test_split(test_size=1_000, seed=12)
29
+ train_dataset = dataset_dict["train"]
30
+ eval_dataset = dataset_dict["test"]
31
+
32
+ # 4. Define a loss function
33
+ loss = SpladeLoss(
34
+ model=model,
35
+ loss=SparseMultipleNegativesRankingLoss(model=model),
36
+ lambda_query=5e-5,
37
+ lambda_corpus=3e-5,
38
+ )
39
+
40
+ # 5. (Optional) Specify training arguments
41
+ args = SparseEncoderTrainingArguments(
42
+ # Required parameter:
43
+ output_dir="models/splade-bert-tiny-nq",
44
+ # Optional training parameters:
45
+ num_train_epochs=1,
46
+ per_device_train_batch_size=64,
47
+ per_device_eval_batch_size=64,
48
+ learning_rate=2e-5,
49
+ warmup_ratio=0.1,
50
+ fp16=True, # Set to False if you get an error that your GPU can't run on FP16
51
+ bf16=False, # Set to True if you have a GPU that supports BF16
52
+ batch_sampler=BatchSamplers.NO_DUPLICATES, # MultipleNegativesRankingLoss benefits from no duplicate samples in a batch
53
+ # Optional tracking/debugging parameters:
54
+ eval_strategy="steps",
55
+ eval_steps=200,
56
+ save_strategy="steps",
57
+ save_steps=200,
58
+ save_total_limit=2,
59
+ logging_steps=20,
60
+ run_name="splade-bert-tiny-nq", # Will be used in W&B if `wandb` is installed
61
+ )
62
+
63
+ # 6. (Optional) Create an evaluator & evaluate the base model
64
+ dev_evaluator = SparseNanoBEIREvaluator(dataset_names=["msmarco", "nfcorpus", "nq"], batch_size=16)
65
+
66
+ # 7. Create a trainer & train
67
+ trainer = SparseEncoderTrainer(
68
+ model=model,
69
+ args=args,
70
+ train_dataset=train_dataset,
71
+ eval_dataset=eval_dataset,
72
+ loss=loss,
73
+ evaluator=dev_evaluator,
74
+ )
75
+ trainer.train()
76
+
77
+ # 8. Evaluate the model performance again after training
78
+ dev_evaluator(model)
79
+
80
+ # 9. Save the trained model
81
+ model.save_pretrained("models/splade-bert-tiny-nq/final")
82
+
83
+ # 10. (Optional) Push it to the Hugging Face Hub
84
+ model.push_to_hub("splade-bert-tiny-nq")