tomaarsen HF Staff commited on
Commit
d8e85c2
·
verified ·
1 Parent(s): 63e25f5

Add new SparseEncoder model

Browse files
1_SpladePooling/config.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "pooling_strategy": "max",
3
+ "activation_function": "relu",
4
+ "word_embedding_dimension": 30522
5
+ }
README.md ADDED
@@ -0,0 +1,909 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ tags:
6
+ - sentence-transformers
7
+ - sparse-encoder
8
+ - sparse
9
+ - splade
10
+ - generated_from_trainer
11
+ - dataset_size:99000
12
+ - loss:SpladeLoss
13
+ widget:
14
+ - source_sentence: who are the dancers in the limp bizkit rollin video
15
+ sentences:
16
+ - Voting age Before the Second World War, the voting age in almost all countries
17
+ was 21 years or higher. Czechoslovakia was the first to reduce the voting age
18
+ to 20 years in 1946, and by 1968 a total of 17 countries had lowered their voting
19
+ age.[1] Many countries, particularly in Western Europe, reduced their voting ages
20
+ to 18 years during the 1970s, starting with the United Kingdom (1969),[2] with
21
+ the United States (26th Amendment) (1971), Canada, West Germany (1972), Australia
22
+ (1974), France (1974), and others following soon afterwards. By the end of the
23
+ 20th century, 18 had become by far the most common voting age. However, a few
24
+ countries maintain a voting age of 20 years or higher. It was argued that young
25
+ men could be drafted to go to war at 18, and many people felt they should be able
26
+ to vote at the age of 18.[3]
27
+ - Rollin' (Limp Bizkit song) The music video was filmed atop the South Tower of
28
+ the former World Trade Center in New York City. The introduction features Ben
29
+ Stiller and Stephen Dorff mistaking Fred Durst for the valet and giving him the
30
+ keys to their Bentley Azure. Also making a cameo is break dancer Mr. Wiggles.
31
+ The rest of the video has several cuts to Durst and his bandmates hanging out
32
+ of the Bentley as they drive about Manhattan. The song Ben Stiller is playing
33
+ at the beginning is "My Generation" from the same album. The video also features
34
+ scenes of Fred Durst with five girls dancing in a room. The video was filmed around
35
+ the same time as the film Zoolander, which explains Stiller and Dorff's appearance.
36
+ Fred Durst has a small cameo in that film.
37
+ - Eobard Thawne When Thawne reappears, he murders the revived Johnny Quick,[9] before
38
+ proceeding to trap Barry and the revived Max Mercury inside the negative Speed
39
+ Force. Thawne then attempts to kill Wally West's children through their connection
40
+ to the Speed Force in front of Linda Park-West, only to be stopped by Jay Garrick
41
+ and Bart Allen. Thawne defeats Jay and prepares to kill Bart, but Barry, Max,
42
+ Wally, Jesse Quick, and Impulse arrive to prevent the villain from doing so.[8][10]
43
+ In the ensuing fight, Thawne reveals that he is responsible for every tragedy
44
+ that has occurred in Barry's life, including the death of his mother. Thawne then
45
+ decides to destroy everything the Flash holds dear by killing Barry's wife, Iris,
46
+ before they even met.[10]
47
+ - source_sentence: who wins season 14 of hell's kitchen
48
+ sentences:
49
+ - Hell's Kitchen (U.S. season 14) Season 14 of the American competitive reality
50
+ television series Hell's Kitchen premiered on March 3, 2015 on Fox. The prize
51
+ is a head chef position at Gordon Ramsay Pub & Grill in Caesars Atlantic City.[1]
52
+ Gordon Ramsay returned as head chef with Andi Van Willigan and James Avery returning
53
+ as sous-chefs for both their respective kitchens as well as Marino Monferrato
54
+ as the maître d'. Executive chef Meghan Gill from Roanoke, Virginia, won the
55
+ competition, thus becoming the fourteenth winner of Hell's Kitchen.
56
+ - 'Maze Runner: The Death Cure On April 22, 2017, the studio delayed the release
57
+ date once again, to February 9, 2018, in order to allow more time for post-production;
58
+ months later, on August 25, the studio moved the release forward two weeks.[17]
59
+ The film will premiere on January 26, 2018 in 3D, IMAX and IMAX 3D.[18][19]'
60
+ - North American Plate On its western edge, the Farallon Plate has been subducting
61
+ under the North American Plate since the Jurassic Period. The Farallon Plate has
62
+ almost completely subducted beneath the western portion of the North American
63
+ Plate leaving that part of the North American Plate in contact with the Pacific
64
+ Plate as the San Andreas Fault. The Juan de Fuca, Explorer, Gorda, Rivera, Cocos
65
+ and Nazca plates are remnants of the Farallon Plate.
66
+ - source_sentence: who played the dj in the movie the warriors
67
+ sentences:
68
+ - List of Arrow episodes As of May 17, 2018,[update] 138 episodes of Arrow have
69
+ aired, concluding the sixth season. On April 2, 2018, the CW renewed the series
70
+ for a seventh season.[1]
71
+ - Lynne Thigpen Cherlynne Theresa "Lynne" Thigpen (December 22, 1948 – March 12,
72
+ 2003) was an American actress, best known for her role as "The Chief" of ACME
73
+ in the various Carmen Sandiego television series and computer games from 1991
74
+ to 1997. For her varied television work, Thigpen was nominated for six Daytime
75
+ Emmy Awards; she won a Tony Award in 1997 for portraying Dr. Judith Kaufman in
76
+ An American Daughter.
77
+ - The Washington Post The Washington Post is an American daily newspaper. It is
78
+ the most widely circulated newspaper published in Washington, D.C., and was founded
79
+ on December 6, 1877,[7] making it the area's oldest extant newspaper. In February
80
+ 2017, amid a barrage of criticism from President Donald Trump over the paper's
81
+ coverage of his campaign and early presidency as well as concerns among the American
82
+ press about Trump's criticism and threats against journalists who provide coverage
83
+ he deems unfavorable, the Post adopted the slogan "Democracy Dies in Darkness".[8]
84
+ - source_sentence: how old was messi when he started his career
85
+ sentences:
86
+ - Lionel Messi Born and raised in central Argentina, Messi was diagnosed with a
87
+ growth hormone deficiency as a child. At age 13, he relocated to Spain to join
88
+ Barcelona, who agreed to pay for his medical treatment. After a fast progression
89
+ through Barcelona's youth academy, Messi made his competitive debut aged 17 in
90
+ October 2004. Despite being injury-prone during his early career, he established
91
+ himself as an integral player for the club within the next three years, finishing
92
+ 2007 as a finalist for both the Ballon d'Or and FIFA World Player of the Year
93
+ award, a feat he repeated the following year. His first uninterrupted campaign
94
+ came in the 2008–09 season, during which he helped Barcelona achieve the first
95
+ treble in Spanish football. At 22 years old, Messi won the Ballon d'Or and FIFA
96
+ World Player of the Year award by record voting margins.
97
+ - We Are Marshall Filming of We Are Marshall commenced on April 3, 2006, in Huntington,
98
+ West Virginia, and was completed in Atlanta, Georgia. The premiere for the film
99
+ was held at the Keith Albee Theater on December 12, 2006, in Huntington; other
100
+ special screenings were held at Pullman Square. The movie was released nationwide
101
+ on December 22, 2006.
102
+ - One Fish, Two Fish, Red Fish, Blue Fish One Fish, Two Fish, Red Fish, Blue Fish
103
+ is a 1960 children's book by Dr. Seuss. It is a simple rhyming book for beginning
104
+ readers, with a freewheeling plot about a boy and a girl named Jay and Kay and
105
+ the many amazing creatures they have for friends and pets. Interspersed are some
106
+ rather surreal and unrelated skits, such as a man named Ned whose feet stick out
107
+ from his bed, and a creature who has a bird in his ear. As of 2001, over 6 million
108
+ copies of the book had been sold, placing it 13th on a list of "All-Time Bestselling
109
+ Children's Books" from Publishers Weekly.[1] Based on a 2007 online poll, the
110
+ United States' National Education Association labor union named the book one of
111
+ its "Teachers' Top 100 Books for Children."[2]
112
+ - source_sentence: is send in the clowns from a musical
113
+ sentences:
114
+ - Money in the Bank ladder match The first match was contested in 2005 at WrestleMania
115
+ 21, after being invented (in kayfabe) by Chris Jericho.[1] At the time, it was
116
+ exclusive to wrestlers of the Raw brand, and Edge won the inaugural match.[1]
117
+ From then until 2010, the Money in the Bank ladder match, now open to all WWE
118
+ brands, became a WrestleMania mainstay. 2010 saw a second and third Money in the
119
+ Bank ladder match when the Money in the Bank pay-per-view debuted in July. Unlike
120
+ the matches at WrestleMania, this new event featured two such ladder matches –
121
+ one each for a contract for the WWE Championship and World Heavyweight Championship,
122
+ respectively.
123
+ - The Suite Life on Deck The Suite Life on Deck is an American sitcom that aired
124
+ on Disney Channel from September 26, 2008 to May 6, 2011. It is a sequel/spin-off
125
+ of the Disney Channel Original Series The Suite Life of Zack & Cody. The series
126
+ follows twin brothers Zack and Cody Martin and hotel heiress London Tipton in
127
+ a new setting, the SS Tipton, where they attend classes at "Seven Seas High School"
128
+ and meet Bailey Pickett while Mr. Moseby manages the ship. The ship travels around
129
+ the world to nations such as Italy, France, Greece, India, Sweden and the United
130
+ Kingdom where the characters experience different cultures, adventures, and situations.[1]
131
+ - 'Send In the Clowns "Send In the Clowns" is a song written by Stephen Sondheim
132
+ for the 1973 musical A Little Night Music, an adaptation of Ingmar Bergman''s
133
+ film Smiles of a Summer Night. It is a ballad from Act Two, in which the character
134
+ Desirée reflects on the ironies and disappointments of her life. Among other things,
135
+ she looks back on an affair years earlier with the lawyer Fredrik, who was deeply
136
+ in love with her but whose marriage proposals she had rejected. Meeting him after
137
+ so long, she realizes she is in love with him and finally ready to marry him,
138
+ but now it is he who rejects her: he is in an unconsummated marriage with a much
139
+ younger woman. Desirée proposes marriage to rescue him from this situation, but
140
+ he declines, citing his dedication to his bride. Reacting to his rejection, Desirée
141
+ sings this song. The song is later reprised as a coda after Fredrik''s young wife
142
+ runs away with his son, and Fredrik is finally free to accept Desirée''s offer.[1]'
143
+ datasets:
144
+ - sentence-transformers/natural-questions
145
+ pipeline_tag: feature-extraction
146
+ library_name: sentence-transformers
147
+ metrics:
148
+ - dot_accuracy@1
149
+ - dot_accuracy@3
150
+ - dot_accuracy@5
151
+ - dot_accuracy@10
152
+ - dot_precision@1
153
+ - dot_precision@3
154
+ - dot_precision@5
155
+ - dot_precision@10
156
+ - dot_recall@1
157
+ - dot_recall@3
158
+ - dot_recall@5
159
+ - dot_recall@10
160
+ - dot_ndcg@10
161
+ - dot_mrr@10
162
+ - dot_map@100
163
+ co2_eq_emissions:
164
+ emissions: 10.656630177765601
165
+ energy_consumed: 0.027415938631047954
166
+ source: codecarbon
167
+ training_type: fine-tuning
168
+ on_cloud: false
169
+ cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
170
+ ram_total_size: 31.777088165283203
171
+ hours_used: 0.082
172
+ hardware_used: 1 x NVIDIA GeForce RTX 3090
173
+ model-index:
174
+ - name: SPLADE BERT-tiny trained on Natural-Questions tuples
175
+ results:
176
+ - task:
177
+ type: sparse-information-retrieval
178
+ name: Sparse Information Retrieval
179
+ dataset:
180
+ name: NanoMSMARCO
181
+ type: NanoMSMARCO
182
+ metrics:
183
+ - type: dot_accuracy@1
184
+ value: 0.22
185
+ name: Dot Accuracy@1
186
+ - type: dot_accuracy@3
187
+ value: 0.36
188
+ name: Dot Accuracy@3
189
+ - type: dot_accuracy@5
190
+ value: 0.4
191
+ name: Dot Accuracy@5
192
+ - type: dot_accuracy@10
193
+ value: 0.54
194
+ name: Dot Accuracy@10
195
+ - type: dot_precision@1
196
+ value: 0.22
197
+ name: Dot Precision@1
198
+ - type: dot_precision@3
199
+ value: 0.11999999999999998
200
+ name: Dot Precision@3
201
+ - type: dot_precision@5
202
+ value: 0.08000000000000002
203
+ name: Dot Precision@5
204
+ - type: dot_precision@10
205
+ value: 0.054000000000000006
206
+ name: Dot Precision@10
207
+ - type: dot_recall@1
208
+ value: 0.22
209
+ name: Dot Recall@1
210
+ - type: dot_recall@3
211
+ value: 0.36
212
+ name: Dot Recall@3
213
+ - type: dot_recall@5
214
+ value: 0.4
215
+ name: Dot Recall@5
216
+ - type: dot_recall@10
217
+ value: 0.54
218
+ name: Dot Recall@10
219
+ - type: dot_ndcg@10
220
+ value: 0.3571008976876618
221
+ name: Dot Ndcg@10
222
+ - type: dot_mrr@10
223
+ value: 0.30113492063492064
224
+ name: Dot Mrr@10
225
+ - type: dot_map@100
226
+ value: 0.31600753362153616
227
+ name: Dot Map@100
228
+ - task:
229
+ type: sparse-information-retrieval
230
+ name: Sparse Information Retrieval
231
+ dataset:
232
+ name: NanoNFCorpus
233
+ type: NanoNFCorpus
234
+ metrics:
235
+ - type: dot_accuracy@1
236
+ value: 0.24
237
+ name: Dot Accuracy@1
238
+ - type: dot_accuracy@3
239
+ value: 0.38
240
+ name: Dot Accuracy@3
241
+ - type: dot_accuracy@5
242
+ value: 0.48
243
+ name: Dot Accuracy@5
244
+ - type: dot_accuracy@10
245
+ value: 0.58
246
+ name: Dot Accuracy@10
247
+ - type: dot_precision@1
248
+ value: 0.24
249
+ name: Dot Precision@1
250
+ - type: dot_precision@3
251
+ value: 0.21333333333333332
252
+ name: Dot Precision@3
253
+ - type: dot_precision@5
254
+ value: 0.184
255
+ name: Dot Precision@5
256
+ - type: dot_precision@10
257
+ value: 0.16
258
+ name: Dot Precision@10
259
+ - type: dot_recall@1
260
+ value: 0.01910619386686893
261
+ name: Dot Recall@1
262
+ - type: dot_recall@3
263
+ value: 0.03647891009411463
264
+ name: Dot Recall@3
265
+ - type: dot_recall@5
266
+ value: 0.043286562520389434
267
+ name: Dot Recall@5
268
+ - type: dot_recall@10
269
+ value: 0.0624423217616165
270
+ name: Dot Recall@10
271
+ - type: dot_ndcg@10
272
+ value: 0.1824659316003306
273
+ name: Dot Ndcg@10
274
+ - type: dot_mrr@10
275
+ value: 0.3309444444444445
276
+ name: Dot Mrr@10
277
+ - type: dot_map@100
278
+ value: 0.0640015611933746
279
+ name: Dot Map@100
280
+ - task:
281
+ type: sparse-information-retrieval
282
+ name: Sparse Information Retrieval
283
+ dataset:
284
+ name: NanoNQ
285
+ type: NanoNQ
286
+ metrics:
287
+ - type: dot_accuracy@1
288
+ value: 0.1
289
+ name: Dot Accuracy@1
290
+ - type: dot_accuracy@3
291
+ value: 0.24
292
+ name: Dot Accuracy@3
293
+ - type: dot_accuracy@5
294
+ value: 0.34
295
+ name: Dot Accuracy@5
296
+ - type: dot_accuracy@10
297
+ value: 0.44
298
+ name: Dot Accuracy@10
299
+ - type: dot_precision@1
300
+ value: 0.1
301
+ name: Dot Precision@1
302
+ - type: dot_precision@3
303
+ value: 0.08
304
+ name: Dot Precision@3
305
+ - type: dot_precision@5
306
+ value: 0.068
307
+ name: Dot Precision@5
308
+ - type: dot_precision@10
309
+ value: 0.046000000000000006
310
+ name: Dot Precision@10
311
+ - type: dot_recall@1
312
+ value: 0.09
313
+ name: Dot Recall@1
314
+ - type: dot_recall@3
315
+ value: 0.22
316
+ name: Dot Recall@3
317
+ - type: dot_recall@5
318
+ value: 0.32
319
+ name: Dot Recall@5
320
+ - type: dot_recall@10
321
+ value: 0.41
322
+ name: Dot Recall@10
323
+ - type: dot_ndcg@10
324
+ value: 0.24844109892252747
325
+ name: Dot Ndcg@10
326
+ - type: dot_mrr@10
327
+ value: 0.20507142857142857
328
+ name: Dot Mrr@10
329
+ - type: dot_map@100
330
+ value: 0.208667797146501
331
+ name: Dot Map@100
332
+ - task:
333
+ type: sparse-nano-beir
334
+ name: Sparse Nano BEIR
335
+ dataset:
336
+ name: NanoBEIR mean
337
+ type: NanoBEIR_mean
338
+ metrics:
339
+ - type: dot_accuracy@1
340
+ value: 0.18666666666666665
341
+ name: Dot Accuracy@1
342
+ - type: dot_accuracy@3
343
+ value: 0.32666666666666666
344
+ name: Dot Accuracy@3
345
+ - type: dot_accuracy@5
346
+ value: 0.4066666666666667
347
+ name: Dot Accuracy@5
348
+ - type: dot_accuracy@10
349
+ value: 0.52
350
+ name: Dot Accuracy@10
351
+ - type: dot_precision@1
352
+ value: 0.18666666666666665
353
+ name: Dot Precision@1
354
+ - type: dot_precision@3
355
+ value: 0.13777777777777778
356
+ name: Dot Precision@3
357
+ - type: dot_precision@5
358
+ value: 0.11066666666666668
359
+ name: Dot Precision@5
360
+ - type: dot_precision@10
361
+ value: 0.08666666666666667
362
+ name: Dot Precision@10
363
+ - type: dot_recall@1
364
+ value: 0.10970206462228964
365
+ name: Dot Recall@1
366
+ - type: dot_recall@3
367
+ value: 0.20549297003137154
368
+ name: Dot Recall@3
369
+ - type: dot_recall@5
370
+ value: 0.25442885417346317
371
+ name: Dot Recall@5
372
+ - type: dot_recall@10
373
+ value: 0.3374807739205388
374
+ name: Dot Recall@10
375
+ - type: dot_ndcg@10
376
+ value: 0.26266930940350663
377
+ name: Dot Ndcg@10
378
+ - type: dot_mrr@10
379
+ value: 0.27905026455026455
380
+ name: Dot Mrr@10
381
+ - type: dot_map@100
382
+ value: 0.1962256306538039
383
+ name: Dot Map@100
384
+ ---
385
+
386
+ # SPLADE BERT-tiny trained on Natural-Questions tuples
387
+
388
+ This is a [SPLADE Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model trained on the [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) dataset using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.
389
+
390
+ ## Model Details
391
+
392
+ ### Model Description
393
+ - **Model Type:** SPLADE Sparse Encoder
394
+ <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
395
+ - **Maximum Sequence Length:** 512 tokens
396
+ - **Output Dimensionality:** 30522 dimensions
397
+ - **Similarity Function:** Dot Product
398
+ - **Training Dataset:**
399
+ - [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions)
400
+ - **Language:** en
401
+ - **License:** apache-2.0
402
+
403
+ ### Model Sources
404
+
405
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
406
+ - **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html)
407
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
408
+ - **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder)
409
+
410
+ ### Full Model Architecture
411
+
412
+ ```
413
+ SparseEncoder(
414
+ (0): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: BertForMaskedLM
415
+ (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
416
+ )
417
+ ```
418
+
419
+ ## Usage
420
+
421
+ ### Direct Usage (Sentence Transformers)
422
+
423
+ First install the Sentence Transformers library:
424
+
425
+ ```bash
426
+ pip install -U sentence-transformers
427
+ ```
428
+
429
+ Then you can load this model and run inference.
430
+ ```python
431
+ from sentence_transformers import SparseEncoder
432
+
433
+ # Download from the 🤗 Hub
434
+ model = SparseEncoder("tomaarsen/splade-bert-tiny-nq")
435
+ # Run inference
436
+ sentences = [
437
+ 'is send in the clowns from a musical',
438
+ 'Send In the Clowns "Send In the Clowns" is a song written by Stephen Sondheim for the 1973 musical A Little Night Music, an adaptation of Ingmar Bergman\'s film Smiles of a Summer Night. It is a ballad from Act Two, in which the character Desirée reflects on the ironies and disappointments of her life. Among other things, she looks back on an affair years earlier with the lawyer Fredrik, who was deeply in love with her but whose marriage proposals she had rejected. Meeting him after so long, she realizes she is in love with him and finally ready to marry him, but now it is he who rejects her: he is in an unconsummated marriage with a much younger woman. Desirée proposes marriage to rescue him from this situation, but he declines, citing his dedication to his bride. Reacting to his rejection, Desirée sings this song. The song is later reprised as a coda after Fredrik\'s young wife runs away with his son, and Fredrik is finally free to accept Desirée\'s offer.[1]',
439
+ 'The Suite Life on Deck The Suite Life on Deck is an American sitcom that aired on Disney Channel from September 26, 2008 to May 6, 2011. It is a sequel/spin-off of the Disney Channel Original Series The Suite Life of Zack & Cody. The series follows twin brothers Zack and Cody Martin and hotel heiress London Tipton in a new setting, the SS Tipton, where they attend classes at "Seven Seas High School" and meet Bailey Pickett while Mr. Moseby manages the ship. The ship travels around the world to nations such as Italy, France, Greece, India, Sweden and the United Kingdom where the characters experience different cultures, adventures, and situations.[1]',
440
+ ]
441
+ embeddings = model.encode(sentences)
442
+ print(embeddings.shape)
443
+ # (3, 30522)
444
+
445
+ # Get the similarity scores for the embeddings
446
+ similarities = model.similarity(embeddings, embeddings)
447
+ print(similarities.shape)
448
+ # [3, 3]
449
+ ```
450
+
451
+ <!--
452
+ ### Direct Usage (Transformers)
453
+
454
+ <details><summary>Click to see the direct usage in Transformers</summary>
455
+
456
+ </details>
457
+ -->
458
+
459
+ <!--
460
+ ### Downstream Usage (Sentence Transformers)
461
+
462
+ You can finetune this model on your own dataset.
463
+
464
+ <details><summary>Click to expand</summary>
465
+
466
+ </details>
467
+ -->
468
+
469
+ <!--
470
+ ### Out-of-Scope Use
471
+
472
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
473
+ -->
474
+
475
+ ## Evaluation
476
+
477
+ ### Metrics
478
+
479
+ #### Sparse Information Retrieval
480
+
481
+ * Datasets: `NanoMSMARCO`, `NanoNFCorpus` and `NanoNQ`
482
+ * Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator)
483
+
484
+ | Metric | NanoMSMARCO | NanoNFCorpus | NanoNQ |
485
+ |:-----------------|:------------|:-------------|:-----------|
486
+ | dot_accuracy@1 | 0.22 | 0.24 | 0.1 |
487
+ | dot_accuracy@3 | 0.36 | 0.38 | 0.24 |
488
+ | dot_accuracy@5 | 0.4 | 0.48 | 0.34 |
489
+ | dot_accuracy@10 | 0.54 | 0.58 | 0.44 |
490
+ | dot_precision@1 | 0.22 | 0.24 | 0.1 |
491
+ | dot_precision@3 | 0.12 | 0.2133 | 0.08 |
492
+ | dot_precision@5 | 0.08 | 0.184 | 0.068 |
493
+ | dot_precision@10 | 0.054 | 0.16 | 0.046 |
494
+ | dot_recall@1 | 0.22 | 0.0191 | 0.09 |
495
+ | dot_recall@3 | 0.36 | 0.0365 | 0.22 |
496
+ | dot_recall@5 | 0.4 | 0.0433 | 0.32 |
497
+ | dot_recall@10 | 0.54 | 0.0624 | 0.41 |
498
+ | **dot_ndcg@10** | **0.3571** | **0.1825** | **0.2484** |
499
+ | dot_mrr@10 | 0.3011 | 0.3309 | 0.2051 |
500
+ | dot_map@100 | 0.316 | 0.064 | 0.2087 |
501
+
502
+ #### Sparse Nano BEIR
503
+
504
+ * Dataset: `NanoBEIR_mean`
505
+ * Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:
506
+ ```json
507
+ {
508
+ "dataset_names": [
509
+ "msmarco",
510
+ "nfcorpus",
511
+ "nq"
512
+ ]
513
+ }
514
+ ```
515
+
516
+ | Metric | Value |
517
+ |:-----------------|:-----------|
518
+ | dot_accuracy@1 | 0.1867 |
519
+ | dot_accuracy@3 | 0.3267 |
520
+ | dot_accuracy@5 | 0.4067 |
521
+ | dot_accuracy@10 | 0.52 |
522
+ | dot_precision@1 | 0.1867 |
523
+ | dot_precision@3 | 0.1378 |
524
+ | dot_precision@5 | 0.1107 |
525
+ | dot_precision@10 | 0.0867 |
526
+ | dot_recall@1 | 0.1097 |
527
+ | dot_recall@3 | 0.2055 |
528
+ | dot_recall@5 | 0.2544 |
529
+ | dot_recall@10 | 0.3375 |
530
+ | **dot_ndcg@10** | **0.2627** |
531
+ | dot_mrr@10 | 0.2791 |
532
+ | dot_map@100 | 0.1962 |
533
+
534
+ <!--
535
+ ## Bias, Risks and Limitations
536
+
537
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
538
+ -->
539
+
540
+ <!--
541
+ ### Recommendations
542
+
543
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
544
+ -->
545
+
546
+ ## Training Details
547
+
548
+ ### Training Dataset
549
+
550
+ #### natural-questions
551
+
552
+ * Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
553
+ * Size: 99,000 training samples
554
+ * Columns: <code>query</code> and <code>answer</code>
555
+ * Approximate statistics based on the first 1000 samples:
556
+ | | query | answer |
557
+ |:--------|:-----------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|
558
+ | type | string | string |
559
+ | details | <ul><li>min: 29 characters</li><li>mean: 46.96 characters</li><li>max: 93 characters</li></ul> | <ul><li>min: 10 characters</li><li>mean: 582.13 characters</li><li>max: 2141 characters</li></ul> |
560
+ * Samples:
561
+ | query | answer |
562
+ |:--------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
563
+ | <code>who played the father in papa don't preach</code> | <code>Alex McArthur Alex McArthur (born March 6, 1957) is an American actor.</code> |
564
+ | <code>where was the location of the battle of hastings</code> | <code>Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory.</code> |
565
+ | <code>how many puppies can a dog give birth to</code> | <code>Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22]</code> |
566
+ * Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
567
+ ```json
568
+ {'loss': SparseMultipleNegativesRankingLoss(
569
+ (model): SparseEncoder(
570
+ (0): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: BertForMaskedLM
571
+ (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
572
+ )
573
+ (cross_entropy_loss): CrossEntropyLoss()
574
+ ), 'lambda_corpus': 3e-05, 'lambda_query': 5e-05, 'corpus_regularizer': FlopsLoss(
575
+ (model): SparseEncoder(
576
+ (0): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: BertForMaskedLM
577
+ (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
578
+ )
579
+ ), 'query_regularizer': FlopsLoss(
580
+ (model): SparseEncoder(
581
+ (0): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: BertForMaskedLM
582
+ (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
583
+ )
584
+ )}
585
+ ```
586
+
587
+ ### Evaluation Dataset
588
+
589
+ #### natural-questions
590
+
591
+ * Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
592
+ * Size: 1,000 evaluation samples
593
+ * Columns: <code>query</code> and <code>answer</code>
594
+ * Approximate statistics based on the first 1000 samples:
595
+ | | query | answer |
596
+ |:--------|:----------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|
597
+ | type | string | string |
598
+ | details | <ul><li>min: 30 characters</li><li>mean: 47.2 characters</li><li>max: 96 characters</li></ul> | <ul><li>min: 58 characters</li><li>mean: 598.96 characters</li><li>max: 2480 characters</li></ul> |
599
+ * Samples:
600
+ | query | answer |
601
+ |:-------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
602
+ | <code>where is the tiber river located in italy</code> | <code>Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252 mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709 sq mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks.</code> |
603
+ | <code>what kind of car does jay gatsby drive</code> | <code>Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry.</code> |
604
+ | <code>who sings if i can dream about you</code> | <code>I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman's album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1]</code> |
605
+ * Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
606
+ ```json
607
+ {'loss': SparseMultipleNegativesRankingLoss(
608
+ (model): SparseEncoder(
609
+ (0): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: BertForMaskedLM
610
+ (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
611
+ )
612
+ (cross_entropy_loss): CrossEntropyLoss()
613
+ ), 'lambda_corpus': 3e-05, 'lambda_query': 5e-05, 'corpus_regularizer': FlopsLoss(
614
+ (model): SparseEncoder(
615
+ (0): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: BertForMaskedLM
616
+ (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
617
+ )
618
+ ), 'query_regularizer': FlopsLoss(
619
+ (model): SparseEncoder(
620
+ (0): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: BertForMaskedLM
621
+ (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
622
+ )
623
+ )}
624
+ ```
625
+
626
+ ### Training Hyperparameters
627
+ #### Non-Default Hyperparameters
628
+
629
+ - `eval_strategy`: steps
630
+ - `per_device_train_batch_size`: 64
631
+ - `per_device_eval_batch_size`: 64
632
+ - `learning_rate`: 2e-05
633
+ - `num_train_epochs`: 1
634
+ - `warmup_ratio`: 0.1
635
+ - `fp16`: True
636
+ - `batch_sampler`: no_duplicates
637
+
638
+ #### All Hyperparameters
639
+ <details><summary>Click to expand</summary>
640
+
641
+ - `overwrite_output_dir`: False
642
+ - `do_predict`: False
643
+ - `eval_strategy`: steps
644
+ - `prediction_loss_only`: True
645
+ - `per_device_train_batch_size`: 64
646
+ - `per_device_eval_batch_size`: 64
647
+ - `per_gpu_train_batch_size`: None
648
+ - `per_gpu_eval_batch_size`: None
649
+ - `gradient_accumulation_steps`: 1
650
+ - `eval_accumulation_steps`: None
651
+ - `torch_empty_cache_steps`: None
652
+ - `learning_rate`: 2e-05
653
+ - `weight_decay`: 0.0
654
+ - `adam_beta1`: 0.9
655
+ - `adam_beta2`: 0.999
656
+ - `adam_epsilon`: 1e-08
657
+ - `max_grad_norm`: 1.0
658
+ - `num_train_epochs`: 1
659
+ - `max_steps`: -1
660
+ - `lr_scheduler_type`: linear
661
+ - `lr_scheduler_kwargs`: {}
662
+ - `warmup_ratio`: 0.1
663
+ - `warmup_steps`: 0
664
+ - `log_level`: passive
665
+ - `log_level_replica`: warning
666
+ - `log_on_each_node`: True
667
+ - `logging_nan_inf_filter`: True
668
+ - `save_safetensors`: True
669
+ - `save_on_each_node`: False
670
+ - `save_only_model`: False
671
+ - `restore_callback_states_from_checkpoint`: False
672
+ - `no_cuda`: False
673
+ - `use_cpu`: False
674
+ - `use_mps_device`: False
675
+ - `seed`: 42
676
+ - `data_seed`: None
677
+ - `jit_mode_eval`: False
678
+ - `use_ipex`: False
679
+ - `bf16`: False
680
+ - `fp16`: True
681
+ - `fp16_opt_level`: O1
682
+ - `half_precision_backend`: auto
683
+ - `bf16_full_eval`: False
684
+ - `fp16_full_eval`: False
685
+ - `tf32`: None
686
+ - `local_rank`: 0
687
+ - `ddp_backend`: None
688
+ - `tpu_num_cores`: None
689
+ - `tpu_metrics_debug`: False
690
+ - `debug`: []
691
+ - `dataloader_drop_last`: False
692
+ - `dataloader_num_workers`: 0
693
+ - `dataloader_prefetch_factor`: None
694
+ - `past_index`: -1
695
+ - `disable_tqdm`: False
696
+ - `remove_unused_columns`: True
697
+ - `label_names`: None
698
+ - `load_best_model_at_end`: False
699
+ - `ignore_data_skip`: False
700
+ - `fsdp`: []
701
+ - `fsdp_min_num_params`: 0
702
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
703
+ - `fsdp_transformer_layer_cls_to_wrap`: None
704
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
705
+ - `deepspeed`: None
706
+ - `label_smoothing_factor`: 0.0
707
+ - `optim`: adamw_torch
708
+ - `optim_args`: None
709
+ - `adafactor`: False
710
+ - `group_by_length`: False
711
+ - `length_column_name`: length
712
+ - `ddp_find_unused_parameters`: None
713
+ - `ddp_bucket_cap_mb`: None
714
+ - `ddp_broadcast_buffers`: False
715
+ - `dataloader_pin_memory`: True
716
+ - `dataloader_persistent_workers`: False
717
+ - `skip_memory_metrics`: True
718
+ - `use_legacy_prediction_loop`: False
719
+ - `push_to_hub`: False
720
+ - `resume_from_checkpoint`: None
721
+ - `hub_model_id`: None
722
+ - `hub_strategy`: every_save
723
+ - `hub_private_repo`: None
724
+ - `hub_always_push`: False
725
+ - `gradient_checkpointing`: False
726
+ - `gradient_checkpointing_kwargs`: None
727
+ - `include_inputs_for_metrics`: False
728
+ - `include_for_metrics`: []
729
+ - `eval_do_concat_batches`: True
730
+ - `fp16_backend`: auto
731
+ - `push_to_hub_model_id`: None
732
+ - `push_to_hub_organization`: None
733
+ - `mp_parameters`:
734
+ - `auto_find_batch_size`: False
735
+ - `full_determinism`: False
736
+ - `torchdynamo`: None
737
+ - `ray_scope`: last
738
+ - `ddp_timeout`: 1800
739
+ - `torch_compile`: False
740
+ - `torch_compile_backend`: None
741
+ - `torch_compile_mode`: None
742
+ - `dispatch_batches`: None
743
+ - `split_batches`: None
744
+ - `include_tokens_per_second`: False
745
+ - `include_num_input_tokens_seen`: False
746
+ - `neftune_noise_alpha`: None
747
+ - `optim_target_modules`: None
748
+ - `batch_eval_metrics`: False
749
+ - `eval_on_start`: False
750
+ - `use_liger_kernel`: False
751
+ - `eval_use_gather_object`: False
752
+ - `average_tokens_across_devices`: False
753
+ - `prompts`: None
754
+ - `batch_sampler`: no_duplicates
755
+ - `multi_dataset_batch_sampler`: proportional
756
+
757
+ </details>
758
+
759
+ ### Training Logs
760
+ | Epoch | Step | Training Loss | Validation Loss | NanoMSMARCO_dot_ndcg@10 | NanoNFCorpus_dot_ndcg@10 | NanoNQ_dot_ndcg@10 | NanoBEIR_mean_dot_ndcg@10 |
761
+ |:------:|:----:|:-------------:|:---------------:|:-----------------------:|:------------------------:|:------------------:|:-------------------------:|
762
+ | 0.0129 | 20 | 1688.0217 | - | - | - | - | - |
763
+ | 0.0259 | 40 | 1557.9103 | - | - | - | - | - |
764
+ | 0.0388 | 60 | 1205.4178 | - | - | - | - | - |
765
+ | 0.0517 | 80 | 692.3048 | - | - | - | - | - |
766
+ | 0.0646 | 100 | 297.4244 | - | - | - | - | - |
767
+ | 0.0776 | 120 | 144.2392 | - | - | - | - | - |
768
+ | 0.0905 | 140 | 75.7438 | - | - | - | - | - |
769
+ | 0.1034 | 160 | 35.3506 | - | - | - | - | - |
770
+ | 0.1164 | 180 | 20.7095 | - | - | - | - | - |
771
+ | 0.1293 | 200 | 12.5446 | 6.9048 | 0.1524 | 0.0784 | 0.0574 | 0.0961 |
772
+ | 0.1422 | 220 | 8.1351 | - | - | - | - | - |
773
+ | 0.1551 | 240 | 6.1495 | - | - | - | - | - |
774
+ | 0.1681 | 260 | 4.4986 | - | - | - | - | - |
775
+ | 0.1810 | 280 | 3.5353 | - | - | - | - | - |
776
+ | 0.1939 | 300 | 3.0714 | - | - | - | - | - |
777
+ | 0.2069 | 320 | 2.4237 | - | - | - | - | - |
778
+ | 0.2198 | 340 | 1.9325 | - | - | - | - | - |
779
+ | 0.2327 | 360 | 1.8585 | - | - | - | - | - |
780
+ | 0.2456 | 380 | 1.491 | - | - | - | - | - |
781
+ | 0.2586 | 400 | 1.4503 | 0.8541 | 0.2248 | 0.1322 | 0.1045 | 0.1538 |
782
+ | 0.2715 | 420 | 1.3789 | - | - | - | - | - |
783
+ | 0.2844 | 440 | 1.3195 | - | - | - | - | - |
784
+ | 0.2973 | 460 | 1.198 | - | - | - | - | - |
785
+ | 0.3103 | 480 | 1.1532 | - | - | - | - | - |
786
+ | 0.3232 | 500 | 1.1931 | - | - | - | - | - |
787
+ | 0.3361 | 520 | 1.1989 | - | - | - | - | - |
788
+ | 0.3491 | 540 | 1.008 | - | - | - | - | - |
789
+ | 0.3620 | 560 | 0.9798 | - | - | - | - | - |
790
+ | 0.3749 | 580 | 0.9551 | - | - | - | - | - |
791
+ | 0.3878 | 600 | 0.9687 | 0.4356 | 0.2709 | 0.1438 | 0.1519 | 0.1888 |
792
+ | 0.4008 | 620 | 0.8331 | - | - | - | - | - |
793
+ | 0.4137 | 640 | 0.6947 | - | - | - | - | - |
794
+ | 0.4266 | 660 | 0.7768 | - | - | - | - | - |
795
+ | 0.4396 | 680 | 0.7101 | - | - | - | - | - |
796
+ | 0.4525 | 700 | 0.6902 | - | - | - | - | - |
797
+ | 0.4654 | 720 | 0.6766 | - | - | - | - | - |
798
+ | 0.4783 | 740 | 0.6001 | - | - | - | - | - |
799
+ | 0.4913 | 760 | 0.6231 | - | - | - | - | - |
800
+ | 0.5042 | 780 | 0.5953 | - | - | - | - | - |
801
+ | 0.5171 | 800 | 0.6846 | 0.3068 | 0.2958 | 0.1543 | 0.2071 | 0.2190 |
802
+ | 0.5301 | 820 | 0.5851 | - | - | - | - | - |
803
+ | 0.5430 | 840 | 0.579 | - | - | - | - | - |
804
+ | 0.5559 | 860 | 0.5659 | - | - | - | - | - |
805
+ | 0.5688 | 880 | 0.553 | - | - | - | - | - |
806
+ | 0.5818 | 900 | 0.4812 | - | - | - | - | - |
807
+ | 0.5947 | 920 | 0.5389 | - | - | - | - | - |
808
+ | 0.6076 | 940 | 0.4658 | - | - | - | - | - |
809
+ | 0.6206 | 960 | 0.5309 | - | - | - | - | - |
810
+ | 0.6335 | 980 | 0.484 | - | - | - | - | - |
811
+ | 0.6464 | 1000 | 0.4655 | 0.2527 | 0.3131 | 0.1660 | 0.2294 | 0.2362 |
812
+ | 0.6593 | 1020 | 0.5617 | - | - | - | - | - |
813
+ | 0.6723 | 1040 | 0.4786 | - | - | - | - | - |
814
+ | 0.6852 | 1060 | 0.5561 | - | - | - | - | - |
815
+ | 0.6981 | 1080 | 0.4869 | - | - | - | - | - |
816
+ | 0.7111 | 1100 | 0.5134 | - | - | - | - | - |
817
+ | 0.7240 | 1120 | 0.4702 | - | - | - | - | - |
818
+ | 0.7369 | 1140 | 0.4481 | - | - | - | - | - |
819
+ | 0.7498 | 1160 | 0.4758 | - | - | - | - | - |
820
+ | 0.7628 | 1180 | 0.4625 | - | - | - | - | - |
821
+ | 0.7757 | 1200 | 0.4733 | 0.2330 | 0.3498 | 0.1748 | 0.2357 | 0.2534 |
822
+ | 0.7886 | 1220 | 0.4527 | - | - | - | - | - |
823
+ | 0.8016 | 1240 | 0.4735 | - | - | - | - | - |
824
+ | 0.8145 | 1260 | 0.3818 | - | - | - | - | - |
825
+ | 0.8274 | 1280 | 0.4546 | - | - | - | - | - |
826
+ | 0.8403 | 1300 | 0.4724 | - | - | - | - | - |
827
+ | 0.8533 | 1320 | 0.4194 | - | - | - | - | - |
828
+ | 0.8662 | 1340 | 0.4352 | - | - | - | - | - |
829
+ | 0.8791 | 1360 | 0.3926 | - | - | - | - | - |
830
+ | 0.8920 | 1380 | 0.397 | - | - | - | - | - |
831
+ | 0.9050 | 1400 | 0.4157 | 0.2206 | 0.3558 | 0.1785 | 0.2495 | 0.2613 |
832
+ | 0.9179 | 1420 | 0.4426 | - | - | - | - | - |
833
+ | 0.9308 | 1440 | 0.4077 | - | - | - | - | - |
834
+ | 0.9438 | 1460 | 0.4227 | - | - | - | - | - |
835
+ | 0.9567 | 1480 | 0.4184 | - | - | - | - | - |
836
+ | 0.9696 | 1500 | 0.4838 | - | - | - | - | - |
837
+ | 0.9825 | 1520 | 0.4991 | - | - | - | - | - |
838
+ | 0.9955 | 1540 | 0.3889 | - | - | - | - | - |
839
+ | -1 | -1 | - | - | 0.3571 | 0.1825 | 0.2484 | 0.2627 |
840
+
841
+
842
+ ### Environmental Impact
843
+ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
844
+ - **Energy Consumed**: 0.027 kWh
845
+ - **Carbon Emitted**: 0.011 kg of CO2
846
+ - **Hours Used**: 0.082 hours
847
+
848
+ ### Training Hardware
849
+ - **On Cloud**: No
850
+ - **GPU Model**: 1 x NVIDIA GeForce RTX 3090
851
+ - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
852
+ - **RAM Size**: 31.78 GB
853
+
854
+ ### Framework Versions
855
+ - Python: 3.11.6
856
+ - Sentence Transformers: 4.2.0.dev0
857
+ - Transformers: 4.49.0
858
+ - PyTorch: 2.6.0+cu124
859
+ - Accelerate: 1.5.1
860
+ - Datasets: 2.21.0
861
+ - Tokenizers: 0.21.1
862
+
863
+ ## Citation
864
+
865
+ ### BibTeX
866
+
867
+ #### Sentence Transformers
868
+ ```bibtex
869
+ @inproceedings{reimers-2019-sentence-bert,
870
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
871
+ author = "Reimers, Nils and Gurevych, Iryna",
872
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
873
+ month = "11",
874
+ year = "2019",
875
+ publisher = "Association for Computational Linguistics",
876
+ url = "https://arxiv.org/abs/1908.10084",
877
+ }
878
+ ```
879
+
880
+ #### SpladeLoss
881
+ ```bibtex
882
+ @misc{formal2022distillationhardnegativesampling,
883
+ title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
884
+ author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
885
+ year={2022},
886
+ eprint={2205.04733},
887
+ archivePrefix={arXiv},
888
+ primaryClass={cs.IR},
889
+ url={https://arxiv.org/abs/2205.04733},
890
+ }
891
+ ```
892
+
893
+ <!--
894
+ ## Glossary
895
+
896
+ *Clearly define terms in order to be accessible across audiences.*
897
+ -->
898
+
899
+ <!--
900
+ ## Model Card Authors
901
+
902
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
903
+ -->
904
+
905
+ <!--
906
+ ## Model Card Contact
907
+
908
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
909
+ -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "prajjwal1/bert-tiny",
3
+ "architectures": [
4
+ "BertForMaskedLM"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 128,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 512,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 2,
17
+ "num_hidden_layers": 2,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.49.0",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 30522
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_type": "SparseEncoder",
3
+ "__version__": {
4
+ "sentence_transformers": "4.2.0.dev0",
5
+ "transformers": "4.49.0",
6
+ "pytorch": "2.6.0+cu124"
7
+ },
8
+ "prompts": {},
9
+ "default_prompt_name": null,
10
+ "similarity_fn_name": "dot"
11
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad666f447e266a0be1d4a4c941f403bfe85443fe23b289f666ec3e0386f61131
3
+ size 17671560
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.sparse_encoder.models.MLMTransformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_SpladePooling",
12
+ "type": "sentence_transformers.sparse_encoder.models.SpladePooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 1000000000000000019884624838656,
51
+ "never_split": null,
52
+ "pad_token": "[PAD]",
53
+ "sep_token": "[SEP]",
54
+ "strip_accents": null,
55
+ "tokenize_chinese_chars": true,
56
+ "tokenizer_class": "BertTokenizer",
57
+ "unk_token": "[UNK]"
58
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff