spaly99's picture
Add SetFit model
704efb0 verified
|
raw
history blame
8.36 kB
metadata
library_name: setfit
tags:
  - setfit
  - sentence-transformers
  - text-classification
  - generated_from_setfit_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
widget:
  - text: >-
      Maintenance to the cambridge.org website is scheduled for 14 March at 12am
      – 8am GMT.
  - text: Quarterly Earnings
  - text: >-
      So set sail for Long John Silver's and discover why wa're America's most
      popular sealood vestments antannro fi 
  - text: |2-

                                                              OPEC oil price annually 1960-2024
                                                          
  - text: 'RUSSELL WILSON OF THE SEATTLE SEAHAWKS — DURING SUPER BOWL XLVIII '
pipeline_tag: text-classification
inference: true
base_model: sentence-transformers/paraphrase-mpnet-base-v2
model-index:
  - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: Unknown
          type: unknown
          split: test
        metrics:
          - type: accuracy
            value: 0.8083333333333333
            name: Accuracy
          - type: precision
            value: 0.7894736842105263
            name: Precision
          - type: recall
            value: 0.8035714285714286
            name: Recall
          - type: f1
            value: 0.7964601769911505
            name: F1

SetFit with sentence-transformers/paraphrase-mpnet-base-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
False
  • 'Learn more about this provider'
  • 'Verletzte und Festnahmen'
  • 'Bulgaria'
True
  • 'Free Quotes on Doors '
  • 'Pakistan Cricket Board, Gaddafi Stadium, Ferozepur Road, Lahore, Pakistan. E-Mail: careers@pcb.com.pk '
  • "‘here's a new predator in the urban jungle "

Evaluation

Metrics

Label Accuracy Precision Recall F1
all 0.8083 0.7895 0.8036 0.7965

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("Quarterly Earnings")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 1 8.2229 242
Label Training Sample Count
False 236
True 244

Training Hyperparameters

  • batch_size: (16, 2)
  • num_epochs: (1, 16)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 20
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • run_name: PG-OCR-test-2
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0008 1 0.3892 -
0.0417 50 0.2262 -
0.0833 100 0.2138 -
0.125 150 0.1058 -
0.1667 200 0.1327 -
0.2083 250 0.098 -
0.25 300 0.0719 -
0.2917 350 0.0634 -
0.3333 400 0.0021 -
0.375 450 0.0084 -
0.4167 500 0.0799 -
0.4583 550 0.0822 -
0.5 600 0.0775 -
0.5417 650 0.0114 -
0.5833 700 0.0013 -
0.625 750 0.0121 -
0.6667 800 0.1034 -
0.7083 850 0.0539 -
0.75 900 0.0076 -
0.7917 950 0.0114 -
0.8333 1000 0.0223 -
0.875 1050 0.0208 -
0.9167 1100 0.0246 -
0.9583 1150 0.0098 -
1.0 1200 0.003 -

Framework Versions

  • Python: 3.11.0
  • SetFit: 1.0.3
  • Sentence Transformers: 2.3.0
  • Transformers: 4.37.2
  • PyTorch: 2.2.1+cu121
  • Datasets: 2.16.1
  • Tokenizers: 0.15.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}