metadata
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- accuracy
- precision
- recall
- f1
widget:
- text: >-
Maintenance to the cambridge.org website is scheduled for 14 March at 12am
– 8am GMT.
- text: Quarterly Earnings
- text: >-
So set sail for Long John Silver's and discover why wa're America's most
popular sealood vestments antannro fi
- text: |2-
OPEC oil price annually 1960-2024
- text: 'RUSSELL WILSON OF THE SEATTLE SEAHAWKS — DURING SUPER BOWL XLVIII '
pipeline_tag: text-classification
inference: true
base_model: sentence-transformers/paraphrase-mpnet-base-v2
model-index:
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.8083333333333333
name: Accuracy
- type: precision
value: 0.7894736842105263
name: Precision
- type: recall
value: 0.8035714285714286
name: Recall
- type: f1
value: 0.7964601769911505
name: F1
SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-mpnet-base-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
False |
|
True |
|
Evaluation
Metrics
Label | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|
all | 0.8083 | 0.7895 | 0.8036 | 0.7965 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("Quarterly Earnings")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 8.2229 | 242 |
Label | Training Sample Count |
---|---|
False | 236 |
True | 244 |
Training Hyperparameters
- batch_size: (16, 2)
- num_epochs: (1, 16)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- run_name: PG-OCR-test-2
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0008 | 1 | 0.3892 | - |
0.0417 | 50 | 0.2262 | - |
0.0833 | 100 | 0.2138 | - |
0.125 | 150 | 0.1058 | - |
0.1667 | 200 | 0.1327 | - |
0.2083 | 250 | 0.098 | - |
0.25 | 300 | 0.0719 | - |
0.2917 | 350 | 0.0634 | - |
0.3333 | 400 | 0.0021 | - |
0.375 | 450 | 0.0084 | - |
0.4167 | 500 | 0.0799 | - |
0.4583 | 550 | 0.0822 | - |
0.5 | 600 | 0.0775 | - |
0.5417 | 650 | 0.0114 | - |
0.5833 | 700 | 0.0013 | - |
0.625 | 750 | 0.0121 | - |
0.6667 | 800 | 0.1034 | - |
0.7083 | 850 | 0.0539 | - |
0.75 | 900 | 0.0076 | - |
0.7917 | 950 | 0.0114 | - |
0.8333 | 1000 | 0.0223 | - |
0.875 | 1050 | 0.0208 | - |
0.9167 | 1100 | 0.0246 | - |
0.9583 | 1150 | 0.0098 | - |
1.0 | 1200 | 0.003 | - |
Framework Versions
- Python: 3.11.0
- SetFit: 1.0.3
- Sentence Transformers: 2.3.0
- Transformers: 4.37.2
- PyTorch: 2.2.1+cu121
- Datasets: 2.16.1
- Tokenizers: 0.15.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}