OpenLRM / openlrm /utils /preprocess.py
zxhezexin's picture
Update spaces
f2a2544
raw
history blame
3.47 kB
# Copyright (c) 2023-2024, Zexin He
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import rembg
import cv2
class Preprocessor:
"""
Preprocessing under cv2 conventions.
"""
def __init__(self):
self.rembg_session = rembg.new_session(
providers=["CUDAExecutionProvider", "CPUExecutionProvider"],
)
def preprocess(self, image_path: str, save_path: str, rmbg: bool = True, recenter: bool = True, size: int = 512, border_ratio: float = 0.2):
image = self.step_load_to_size(image_path=image_path, size=size*2)
if rmbg:
image = self.step_rembg(image_in=image)
else:
image = cv2.cvtColor(image, cv2.COLOR_BGR2BGRA)
if recenter:
image = self.step_recenter(image_in=image, border_ratio=border_ratio, square_size=size)
else:
image = cv2.resize(
src=image,
dsize=(size, size),
interpolation=cv2.INTER_AREA,
)
return cv2.imwrite(save_path, image)
def step_rembg(self, image_in: np.ndarray) -> np.ndarray:
image_out = rembg.remove(
data=image_in,
session=self.rembg_session,
)
return image_out
def step_recenter(self, image_in: np.ndarray, border_ratio: float, square_size: int) -> np.ndarray:
assert image_in.shape[-1] == 4, "Image to recenter must be RGBA"
mask = image_in[..., -1] > 0
ijs = np.nonzero(mask)
# find bbox
i_min, i_max = ijs[0].min(), ijs[0].max()
j_min, j_max = ijs[1].min(), ijs[1].max()
bbox_height, bbox_width = i_max - i_min, j_max - j_min
# recenter and resize
desired_size = int(square_size * (1 - border_ratio))
scale = desired_size / max(bbox_height, bbox_width)
desired_height, desired_width = int(bbox_height * scale), int(bbox_width * scale)
desired_i_min, desired_j_min = (square_size - desired_height) // 2, (square_size - desired_width) // 2
desired_i_max, desired_j_max = desired_i_min + desired_height, desired_j_min + desired_width
# create new image
image_out = np.zeros((square_size, square_size, 4), dtype=np.uint8)
image_out[desired_i_min:desired_i_max, desired_j_min:desired_j_max] = cv2.resize(
src=image_in[i_min:i_max, j_min:j_max],
dsize=(desired_width, desired_height),
interpolation=cv2.INTER_AREA,
)
return image_out
def step_load_to_size(self, image_path: str, size: int) -> np.ndarray:
image = cv2.imread(image_path, cv2.IMREAD_UNCHANGED)
height, width = image.shape[:2]
scale = size / max(height, width)
height, width = int(height * scale), int(width * scale)
image_out = cv2.resize(
src=image,
dsize=(width, height),
interpolation=cv2.INTER_AREA,
)
return image_out