Spaces:
Sleeping
Sleeping
# Copyright (c) 2023-2024, Zexin He | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# https://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import numpy as np | |
import rembg | |
import cv2 | |
class Preprocessor: | |
""" | |
Preprocessing under cv2 conventions. | |
""" | |
def __init__(self): | |
self.rembg_session = rembg.new_session( | |
providers=["CUDAExecutionProvider", "CPUExecutionProvider"], | |
) | |
def preprocess(self, image_path: str, save_path: str, rmbg: bool = True, recenter: bool = True, size: int = 512, border_ratio: float = 0.2): | |
image = self.step_load_to_size(image_path=image_path, size=size*2) | |
if rmbg: | |
image = self.step_rembg(image_in=image) | |
else: | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2BGRA) | |
if recenter: | |
image = self.step_recenter(image_in=image, border_ratio=border_ratio, square_size=size) | |
else: | |
image = cv2.resize( | |
src=image, | |
dsize=(size, size), | |
interpolation=cv2.INTER_AREA, | |
) | |
return cv2.imwrite(save_path, image) | |
def step_rembg(self, image_in: np.ndarray) -> np.ndarray: | |
image_out = rembg.remove( | |
data=image_in, | |
session=self.rembg_session, | |
) | |
return image_out | |
def step_recenter(self, image_in: np.ndarray, border_ratio: float, square_size: int) -> np.ndarray: | |
assert image_in.shape[-1] == 4, "Image to recenter must be RGBA" | |
mask = image_in[..., -1] > 0 | |
ijs = np.nonzero(mask) | |
# find bbox | |
i_min, i_max = ijs[0].min(), ijs[0].max() | |
j_min, j_max = ijs[1].min(), ijs[1].max() | |
bbox_height, bbox_width = i_max - i_min, j_max - j_min | |
# recenter and resize | |
desired_size = int(square_size * (1 - border_ratio)) | |
scale = desired_size / max(bbox_height, bbox_width) | |
desired_height, desired_width = int(bbox_height * scale), int(bbox_width * scale) | |
desired_i_min, desired_j_min = (square_size - desired_height) // 2, (square_size - desired_width) // 2 | |
desired_i_max, desired_j_max = desired_i_min + desired_height, desired_j_min + desired_width | |
# create new image | |
image_out = np.zeros((square_size, square_size, 4), dtype=np.uint8) | |
image_out[desired_i_min:desired_i_max, desired_j_min:desired_j_max] = cv2.resize( | |
src=image_in[i_min:i_max, j_min:j_max], | |
dsize=(desired_width, desired_height), | |
interpolation=cv2.INTER_AREA, | |
) | |
return image_out | |
def step_load_to_size(self, image_path: str, size: int) -> np.ndarray: | |
image = cv2.imread(image_path, cv2.IMREAD_UNCHANGED) | |
height, width = image.shape[:2] | |
scale = size / max(height, width) | |
height, width = int(height * scale), int(width * scale) | |
image_out = cv2.resize( | |
src=image, | |
dsize=(width, height), | |
interpolation=cv2.INTER_AREA, | |
) | |
return image_out | |