Spaces:
Runtime error
Runtime error
import os | |
import pandas as pd | |
import numpy as np | |
import argparse | |
import datasets | |
import torch | |
from typing import List | |
from tqdm import tqdm | |
from transformers.trainer_utils import set_seed | |
''' | |
wget https://people.eecs.berkeley.edu/~hendrycks/data.tar | |
mkdir data/mmlu | |
mv data.tar data/mmlu | |
cd data/mmlu; tar xf data.tar | |
cd ../../ | |
python eval/evaluate_mmlu.py -d data/mmlu/data/ | |
''' | |
def load_models_tokenizer(args): | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from transformers.generation import GenerationConfig | |
tokenizer = AutoTokenizer.from_pretrained(args.checkpoint_path, trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained(args.checkpoint_path, device_map="auto", trust_remote_code=True).eval() | |
model.generation_config = GenerationConfig.from_pretrained(args.checkpoint_path, trust_remote_code=True) | |
return model, tokenizer | |
def format_example(line, include_answer=True): | |
example = 'Question: ' + line['question'] | |
for choice in choices: | |
example += f'\n{choice}. {line[f"{choice}"]}' | |
if include_answer: | |
example += '\nAnswer: ' + line["answer"] + '\n\n' | |
else: | |
example += '\nAnswer:' | |
return example | |
def generate_few_shot_prompt(k, subject, dev_df): | |
def format_subject(subject): | |
l = subject.split("_") | |
s = "" | |
for entry in l: | |
s += " " + entry | |
return s.strip() | |
prompt = "The following are multiple choice questions (with answers) about {}.\n\n".format(format_subject(subject)) | |
if k == -1: | |
k = dev_df.shape[0] | |
for i in range(k): | |
prompt += format_example( | |
dev_df.iloc[i, :], | |
include_answer=True, | |
) | |
return prompt | |
def get_logits(tokenizer, model, inputs: List[str]): | |
input_ids = tokenizer(inputs, padding=False)['input_ids'] | |
input_ids = torch.tensor(input_ids, device=model.device) | |
if input_ids.shape[1] > args.max_seq_len: | |
input_ids = input_ids[:, input_ids.shape[1]-args.max_seq_len+1:] | |
tokens = {'input_ids': input_ids} | |
outputs = model(input_ids)['logits'] | |
logits = outputs[:, -1, :] | |
log_probs = torch.nn.functional.softmax(logits, dim=-1) | |
return log_probs, {'tokens': tokens} | |
def eval_subject( | |
model, | |
tokenizer, | |
subject_name, | |
test_df, | |
k=5, | |
dev_df=None, | |
few_shot=False, | |
save_result_dir=None, | |
**kwargs | |
): | |
result = [] | |
score = [] | |
few_shot_prompt = generate_few_shot_prompt( | |
k, subject_name, dev_df) if few_shot else [] | |
all_probs = {'prob_A': [], 'prob_B': [], 'prob_C': [], 'prob_D': []} | |
if args.debug: print(f"few_shot_prompt: {few_shot_prompt}") | |
for _, row in tqdm(test_df.iterrows(), total=len(test_df)): | |
question = format_example(row, include_answer=False) | |
full_prompt = few_shot_prompt + question | |
output, input_info = get_logits(tokenizer, model, [full_prompt]) | |
assert output.shape[0] == 1 | |
logits = output.flatten() | |
softval = torch.nn.functional.softmax( | |
torch.tensor( | |
[ | |
logits[tokenizer(" A")['input_ids']], | |
logits[tokenizer(" B")['input_ids']], | |
logits[tokenizer(" C")['input_ids']], | |
logits[tokenizer(" D")['input_ids']], | |
] | |
), | |
dim=0, | |
) | |
if softval.dtype in {torch.bfloat16, torch.float16}: | |
softval = softval.to(dtype=torch.float32) | |
probs = softval.detach().cpu().numpy() | |
for i, choice in enumerate(choices): | |
all_probs[f'prob_{choice}'].append(probs[i]) | |
pred = {0: "A", 1: "B", 2: "C", 3: "D"}[np.argmax(probs)] | |
if 'answer' in row: | |
correct = 1 if pred == row['answer'] else 0 | |
score.append(correct) | |
if args.debug: print(f'{question} pred: {pred} ref: {row["answer"]}') | |
result.append(pred) | |
if save_result_dir: | |
test_df['model_output'] = result | |
for i, choice in enumerate(choices): | |
test_df[f'prob_{choice}'] = (all_probs[f'prob_{choice}']) | |
if score: | |
test_df["correctness"] = score | |
os.makedirs(save_result_dir, exist_ok=True) | |
test_df.to_csv(os.path.join( | |
save_result_dir, f'{subject_name}_result.csv'), encoding="utf-8", index=False) | |
return score | |
def cal_mmlu(res): | |
acc_sum_dict = dict() | |
acc_norm_sum_dict = dict() | |
cnt_dict = dict() | |
acc_sum = 0. | |
cnt = 0 | |
hard_cnt = 0 | |
hard_acc_sum = 0. | |
for class_ in TASK_NAME_MAPPING.keys(): | |
acc_sum_dict[class_] = 0. | |
acc_norm_sum_dict[class_] = 0. | |
cnt_dict[class_] = 0. | |
for tt in TASK_NAME_MAPPING[class_]: | |
acc_sum += sum(res[tt]) | |
cnt += len(res[tt]) | |
acc_sum_dict[class_] += sum(res[tt]) | |
cnt_dict[class_] += len(res[tt]) | |
print('\n\n\n', 'total cnt:', cnt, '\n') | |
for k in TASK_NAME_MAPPING.keys(): | |
if k in cnt_dict: | |
print('%s ACC: %.2f ' % ( | |
k, acc_sum_dict[k] / cnt_dict[k] * 100)) | |
print('AVERAGE ACC:%.2f ' % (acc_sum / cnt * 100)) | |
def main(args): | |
model, tokenizer = load_models_tokenizer(args) | |
dev_result = {} | |
for subject_name in tqdm(SUBJECTS): | |
# val_file_path = os.path.join(args.eval_data_path, 'val', f'{subject_name}_val.csv') | |
dev_file_path = os.path.join(args.eval_data_path, 'dev', f'{subject_name}_dev.csv') | |
test_file_path = os.path.join(args.eval_data_path, 'test', f'{subject_name}_test.csv') | |
# val_df = pd.read_csv(val_file_path, names=['question','A','B','C','D','answer']) | |
dev_df = pd.read_csv(dev_file_path, names=['question','A','B','C','D','answer']) | |
test_df = pd.read_csv(test_file_path, names=['question','A','B','C','D','answer']) | |
score = eval_subject(model, tokenizer, subject_name, test_df, dev_df=dev_df, k=5, few_shot=True, | |
save_result_dir=f"outs/mmlu_eval_result") | |
dev_result[subject_name] = score | |
cal_mmlu(dev_result) | |
TASK_NAME_MAPPING = {'stem': ['abstract_algebra', 'anatomy', 'astronomy', 'college_biology', 'college_chemistry', 'college_computer_science', 'college_mathematics', 'college_physics', 'computer_security', 'conceptual_physics', 'electrical_engineering', 'elementary_mathematics', 'high_school_biology', 'high_school_chemistry', 'high_school_computer_science', 'high_school_mathematics', 'high_school_physics', 'high_school_statistics', 'machine_learning'], | |
'Humanities': ['formal_logic', 'high_school_european_history', 'high_school_us_history', 'high_school_world_history', 'international_law', 'jurisprudence', 'logical_fallacies', 'moral_disputes', 'moral_scenarios', 'philosophy', 'prehistory', 'professional_law', 'world_religions'], | |
'other': ['business_ethics', 'college_medicine', 'human_aging', 'management', 'marketing', 'medical_genetics', 'miscellaneous', 'nutrition', 'professional_accounting', 'professional_medicine', 'virology', 'global_facts', 'clinical_knowledge'], | |
'social': ['econometrics', 'high_school_geography', 'high_school_government_and_politics', 'high_school_macroeconomics', 'high_school_microeconomics', 'high_school_psychology', 'human_sexuality', 'professional_psychology', 'public_relations', 'security_studies', 'sociology', 'us_foreign_policy']} | |
SUBJECTS = [v for vl in TASK_NAME_MAPPING.values() for v in vl] | |
choices = ["A", "B", "C", "D"] | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser(description='Test HF checkpoint.') | |
parser.add_argument('-c', '--checkpoint-path', type=str, help='Checkpoint path', default="Qwen/Qwen-7B") | |
parser.add_argument('-s', '--seed', type=int, default=1234, help='Random seed') | |
parser.add_argument('--gpu', type=int, default=0, help='gpu id') | |
"""Provide extra arguments required for tasks.""" | |
group = parser.add_argument_group(title='Evaluation options') | |
group.add_argument('-d', '--eval_data_path', type=str, | |
help='Path to eval data') | |
group.add_argument("--max-seq-len", type=int, default=2048, | |
help='Size of the output generated text.') | |
group.add_argument("--debug", action='store_true', default=False, | |
help='Print infos.') | |
args = parser.parse_args() | |
set_seed(args.seed) | |
main(args) |