Spaces:
Runtime error
Runtime error
import os | |
import pandas as pd | |
import numpy as np | |
import argparse | |
import datasets | |
import torch | |
import re | |
from thefuzz import process | |
from typing import List | |
from tqdm import tqdm | |
from transformers.trainer_utils import set_seed | |
''' | |
wget https://people.eecs.berkeley.edu/~hendrycks/data.tar | |
mkdir data/mmlu | |
mv data.tar data/mmlu | |
cd data/mmlu; tar xf data.tar | |
cd ../../ | |
pip install thefuzz | |
python eval/evaluate_chat_mmlu.py -d data/mmlu/data/ | |
''' | |
def load_models_tokenizer(args): | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from transformers.generation import GenerationConfig | |
tokenizer = AutoTokenizer.from_pretrained(args.checkpoint_path, trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained(args.checkpoint_path, device_map="auto", trust_remote_code=True, bf16=True, use_flash_attn=True).eval() | |
model.generation_config = GenerationConfig.from_pretrained(args.checkpoint_path, trust_remote_code=True) | |
model.generation_config.do_sample = False # use greedy decoding | |
return model, tokenizer | |
def format_example(line): | |
example = 'The following is a multiple-choice question. Please choose the most suitable one among A, B, C and D as the answer to this question.\n\n' + line['question'] + "\n" | |
for choice in choices: | |
example += f'{choice}. {line[f"{choice}"]}\n' | |
return example | |
def process_before_extraction(gen, choice_dict): | |
# replace the choice by letter in the generated sentence | |
# from longest one to shortest one | |
for key, val in sorted(choice_dict.items(), key=lambda x: len(x[1]), reverse=True): | |
pattern = re.compile(re.escape(val.rstrip(".")), re.IGNORECASE) | |
gen = pattern.sub(key, gen) | |
return gen | |
def extract_choice(gen, choice_list): | |
# answer is A | choice is A | choose A | |
res = re.search(r"(?:(?:[Cc]hoose)|(?:(?:[Aa]nswer|[Cc]hoice)(?![^ABCD]{0,20}?(?:n't|not))[^ABCD]{0,10}?\b(?:|is|:|be))\b)[^ABCD]{0,20}?\b(A|B|C|D)\b", gen) | |
# A is correct | A is right | |
if res is None: | |
res = re.search(r"\b(A|B|C|D)\b(?![^ABCD]{0,8}?(?:n't|not)[^ABCD]{0,5}?(?:correct|right))[^ABCD]{0,10}?\b(?:correct|right)\b", gen) | |
# straight answer: A | |
if res is None: | |
res = re.search(r"^(A|B|C|D)(?:\.|,|:|$)", gen) | |
# simply extract the first appearred letter | |
if res is None: | |
res = re.search(r"(?<![a-zA-Z])(A|B|C|D)(?![a-zA-Z=])", gen) | |
if res is None: | |
return choices[choice_list.index(process.extractOne(gen, choice_list)[0])] | |
else: | |
return res.group(1) | |
def extract_answer(response, row): | |
gen = process_before_extraction(response, {choice: row[choice] for choice in choices}) | |
pred = extract_choice(gen, [row[choice] for choice in choices]) | |
return pred | |
def eval_subject( | |
model, | |
tokenizer, | |
subject_name, | |
test_df, | |
save_result_dir=None, | |
overwrite=False, | |
**kwargs | |
): | |
result_path = os.path.join(save_result_dir, f'{subject_name}_result.csv') | |
if not overwrite and os.path.exists(result_path): | |
print(f"{result_path} existed, skip!") | |
score = [] | |
for (_, datarow), (_, resultrow) in zip(test_df.iterrows(), pd.read_csv(result_path).iterrows()): | |
# pred = extract_answer(resultrow['model_response'], datarow) | |
pred = resultrow['model_output'] | |
correct = 1 if pred == datarow['answer'] else 0 | |
score.append(correct) | |
return score | |
result = [] | |
score = [] | |
for _, row in tqdm(test_df.iterrows(), total=len(test_df)): | |
question = format_example(row) | |
response, history = model.chat( | |
tokenizer, | |
question, | |
history=None, | |
) | |
print(question) | |
print(response) | |
pred = extract_answer(response, row) | |
print(pred) | |
print("======================") | |
if 'answer' in row: | |
correct = 1 if pred == row['answer'] else 0 | |
score.append(correct) | |
if args.debug: print(f'{question} pred: {pred} ref: {row["answer"]}') | |
result.append(pred) | |
if save_result_dir: | |
test_df['model_output'] = result | |
test_df['model_response'] = response | |
if score: | |
test_df["correctness"] = score | |
os.makedirs(save_result_dir, exist_ok=True) | |
test_df.to_csv(os.path.join( | |
save_result_dir, f'{subject_name}_result.csv'), encoding="utf-8", index=False) | |
return score | |
def cal_mmlu(res): | |
acc_sum_dict = dict() | |
acc_norm_sum_dict = dict() | |
cnt_dict = dict() | |
acc_sum = 0. | |
cnt = 0 | |
hard_cnt = 0 | |
hard_acc_sum = 0. | |
for class_ in TASK_NAME_MAPPING.keys(): | |
acc_sum_dict[class_] = 0. | |
acc_norm_sum_dict[class_] = 0. | |
cnt_dict[class_] = 0. | |
for tt in TASK_NAME_MAPPING[class_]: | |
acc_sum += sum(res[tt]) | |
cnt += len(res[tt]) | |
acc_sum_dict[class_] += sum(res[tt]) | |
cnt_dict[class_] += len(res[tt]) | |
print('\n\n\n') | |
for k in TASK_NAME_MAPPING.keys(): | |
if k in cnt_dict: | |
print('%s ACC: %.2f ' % ( | |
k, acc_sum_dict[k] * 100 / cnt_dict[k])) | |
print('AVERAGE ACC:%.2f ' % (acc_sum *100 / cnt)) | |
def main(args): | |
print("loading model weights") | |
if args.checkpoint_path is not None: | |
model, tokenizer = load_models_tokenizer(args) | |
else: | |
model, tokenizer = None, None | |
print("model loaded") | |
dev_result = {} | |
for subject_name in tqdm(SUBJECTS): | |
# val_file_path = os.path.join(args.eval_data_path, 'val', f'{subject_name}_val.csv') | |
# dev_file_path = os.path.join(args.eval_data_path, 'dev', f'{subject_name}_dev.csv') | |
test_file_path = os.path.join(args.eval_data_path, 'test', f'{subject_name}_test.csv') | |
# val_df = pd.read_csv(val_file_path, names=['question','A','B','C','D','answer']) | |
# dev_df = pd.read_csv(dev_file_path, names=['question','A','B','C','D','answer']) | |
test_df = pd.read_csv(test_file_path, names=['question','A','B','C','D','answer']) | |
score = eval_subject(model, tokenizer, subject_name, test_df, save_result_dir=f"outs_chat/mmlu_eval_result", overwrite=args.overwrite) | |
dev_result[subject_name] = score | |
cal_mmlu(dev_result) | |
TASK_NAME_MAPPING = {'stem': ['abstract_algebra', 'anatomy', 'astronomy', 'college_biology', 'college_chemistry', 'college_computer_science', 'college_mathematics', 'college_physics', 'computer_security', 'conceptual_physics', 'electrical_engineering', 'elementary_mathematics', 'high_school_biology', 'high_school_chemistry', 'high_school_computer_science', 'high_school_mathematics', 'high_school_physics', 'high_school_statistics', 'machine_learning'], | |
'Humanities': ['formal_logic', 'high_school_european_history', 'high_school_us_history', 'high_school_world_history', 'international_law', 'jurisprudence', 'logical_fallacies', 'moral_disputes', 'moral_scenarios', 'philosophy', 'prehistory', 'professional_law', 'world_religions'], | |
'other': ['business_ethics', 'college_medicine', 'human_aging', 'management', 'marketing', 'medical_genetics', 'miscellaneous', 'nutrition', 'professional_accounting', 'professional_medicine', 'virology', 'global_facts', 'clinical_knowledge'], | |
'social': ['econometrics', 'high_school_geography', 'high_school_government_and_politics', 'high_school_macroeconomics', 'high_school_microeconomics', 'high_school_psychology', 'human_sexuality', 'professional_psychology', 'public_relations', 'security_studies', 'sociology', 'us_foreign_policy']} | |
SUBJECTS = [v for vl in TASK_NAME_MAPPING.values() for v in vl] | |
choices = ["A", "B", "C", "D"] | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser(description='Test HF checkpoint.') | |
parser.add_argument('-c', '--checkpoint-path', type=str, help='Checkpoint path', default="Qwen/Qwen-7B-Chat") | |
parser.add_argument('-s', '--seed', type=int, default=1234, help='Random seed') | |
"""Provide extra arguments required for tasks.""" | |
group = parser.add_argument_group(title='Evaluation options') | |
group.add_argument('-d', '--eval_data_path', type=str, | |
help='Path to eval data') | |
group.add_argument("--debug", action='store_true', default=False, | |
help='Print infos.') | |
group.add_argument("--overwrite", action='store_true', default=False, | |
help='Overwrite existed results') | |
args = parser.parse_args() | |
set_seed(args.seed) | |
main(args) |