Spaces:
Runtime error
Runtime error
什么是HuggingFace Agent
使用大模型作为Agent,仅需自然语言就可调用HuggingFace中的模型,目前支持两种模式:
- run模式:单轮对话,没有上下文,单个prompt多tool组合调用能力好
- chat模式:多轮对话,有上下文,单次调用能力好,可能需要多次prompt实现多tool组合调用
详见官方文档:Transformers Agents
使用通义千问作为Agent
安装依赖
pip install transformers
构建QWenAgent
以下代码便可实现QWenAgent:
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, Agent
from transformers.generation import GenerationConfig
class QWenAgent(Agent):
"""
Agent that uses QWen model and tokenizer to generate code.
Args:
chat_prompt_template (`str`, *optional*):
Pass along your own prompt if you want to override the default template for the `chat` method. Can be the
actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named
`chat_prompt_template.txt` in this repo in this case.
run_prompt_template (`str`, *optional*):
Pass along your own prompt if you want to override the default template for the `run` method. Can be the
actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named
`run_prompt_template.txt` in this repo in this case.
additional_tools ([`Tool`], list of tools or dictionary with tool values, *optional*):
Any additional tools to include on top of the default ones. If you pass along a tool with the same name as
one of the default tools, that default tool will be overridden.
Example:
```py
agent = QWenAgent()
agent.run("Draw me a picture of rivers and lakes.")
```
"""
def __init__(self, chat_prompt_template=None, run_prompt_template=None, additional_tools=None):
checkpoint = "Qwen/Qwen-7B-Chat"
self.tokenizer = AutoTokenizer.from_pretrained(checkpoint, trust_remote_code=True)
self.model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto", trust_remote_code=True).cuda().eval()
self.model.generation_config = GenerationConfig.from_pretrained(checkpoint, trust_remote_code=True) # 可指定不同的生成长度、top_p等相关超参
self.model.generation_config.do_sample = False # greedy
super().__init__(
chat_prompt_template=chat_prompt_template,
run_prompt_template=run_prompt_template,
additional_tools=additional_tools,
)
def generate_one(self, prompt, stop):
# "Human:" 和 "Assistant:" 曾为通义千问的特殊保留字,需要替换为 "_HUMAN_:" 和 "_ASSISTANT_:"。这一问题将在未来版本修复。
prompt = prompt.replace("Human:", "_HUMAN_:").replace("Assistant:", "_ASSISTANT_:")
stop = [item.replace("Human:", "_HUMAN_:").replace("Assistant:", "_ASSISTANT_:") for item in stop]
result, _ = self.model.chat(self.tokenizer, prompt, history=None)
for stop_seq in stop:
if result.endswith(stop_seq):
result = result[: -len(stop_seq)]
result = result.replace("_HUMAN_:", "Human:").replace("_ASSISTANT_:", "Assistant:")
return result
agent = QWenAgent()
agent.run("Draw me a picture of rivers and lakes.")
使用示例
agent = QWenAgent()
agent.run("generate an image of panda", remote=True)
更多玩法参考HuggingFace官方文档Transformers Agents
Tools
Tools支持
HuggingFace Agent官方14个tool:
- Document question answering: given a document (such as a PDF) in image format, answer a question on this document (Donut)
- Text question answering: given a long text and a question, answer the question in the text (Flan-T5)
- Unconditional image captioning: Caption the image! (BLIP)
- Image question answering: given an image, answer a question on this image (VILT)
- Image segmentation: given an image and a prompt, output the segmentation mask of that prompt (CLIPSeg)
- Speech to text: given an audio recording of a person talking, transcribe the speech into text (Whisper)
- Text to speech: convert text to speech (SpeechT5)
- Zero-shot text classification: given a text and a list of labels, identify to which label the text corresponds the most (BART)
- Text summarization: summarize a long text in one or a few sentences (BART)
- Translation: translate the text into a given language (NLLB)
- Text downloader: to download a text from a web URL
- Text to image: generate an image according to a prompt, leveraging stable diffusion
- Image transformation: transforms an image
- Text to video: generate a small video according to a prompt, leveraging damo-vilab
Tools模型部署
部分工具涉及的模型HuggingFace已进行在线部署,仅需设置remote=True便可实现在线调用:
agent.run(xxx, remote=True)
HuggingFace没有在线部署的模型会自动下载checkpoint进行本地inference 网络原因偶尔连不上HuggingFace,请多次尝试