|
import copy |
|
from datetime import datetime |
|
from typing import Union, Optional, Dict |
|
|
|
import gymnasium as gym |
|
import numpy as np |
|
from ding.envs import BaseEnv, BaseEnvTimestep |
|
from ding.envs import ObsPlusPrevActRewWrapper |
|
from ding.torch_utils import to_ndarray |
|
from ding.utils import ENV_REGISTRY |
|
from easydict import EasyDict |
|
|
|
|
|
@ENV_REGISTRY.register('cartpole_lightzero') |
|
class CartPoleEnv(BaseEnv): |
|
""" |
|
LightZero version of the classic CartPole environment. This class includes methods for resetting, closing, and |
|
stepping through the environment, as well as seeding for reproducibility, saving replay videos, and generating random |
|
actions. It also includes properties for accessing the observation space, action space, and reward space of the |
|
environment. |
|
""" |
|
|
|
config = dict( |
|
|
|
env_name="CartPole-v0", |
|
|
|
|
|
replay_path=None, |
|
) |
|
|
|
@classmethod |
|
def default_config(cls: type) -> EasyDict: |
|
cfg = EasyDict(copy.deepcopy(cls.config)) |
|
cfg.cfg_type = cls.__name__ + 'Dict' |
|
return cfg |
|
|
|
def __init__(self, cfg: dict = {}) -> None: |
|
""" |
|
Initialize the environment with a configuration dictionary. Sets up spaces for observations, actions, and rewards. |
|
""" |
|
self._cfg = cfg |
|
self._init_flag = False |
|
self._continuous = False |
|
self._replay_path = cfg.replay_path |
|
self._observation_space = gym.spaces.Box( |
|
low=np.array([-4.8, float("-inf"), -0.42, float("-inf")]), |
|
high=np.array([4.8, float("inf"), 0.42, float("inf")]), |
|
shape=(4,), |
|
dtype=np.float32 |
|
) |
|
self._action_space = gym.spaces.Discrete(2) |
|
self._action_space.seed(0) |
|
self._reward_space = gym.spaces.Box(low=0.0, high=1.0, shape=(1,), dtype=np.float32) |
|
|
|
def reset(self) -> Dict[str, np.ndarray]: |
|
""" |
|
Reset the environment. If it hasn't been initialized yet, this method also handles that. It also handles seeding |
|
if necessary. Returns the first observation. |
|
""" |
|
if not self._init_flag: |
|
self._env = gym.make('CartPole-v0', render_mode="rgb_array") |
|
if self._replay_path is not None: |
|
timestamp = datetime.now().strftime("%Y%m%d%H%M%S") |
|
video_name = f'{self._env.spec.id}-video-{timestamp}' |
|
self._env = gym.wrappers.RecordVideo( |
|
self._env, |
|
video_folder=self._replay_path, |
|
episode_trigger=lambda episode_id: True, |
|
name_prefix=video_name |
|
) |
|
if hasattr(self._cfg, 'obs_plus_prev_action_reward') and self._cfg.obs_plus_prev_action_reward: |
|
self._env = ObsPlusPrevActRewWrapper(self._env) |
|
self._init_flag = True |
|
if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed: |
|
np_seed = 100 * np.random.randint(1, 1000) |
|
self._seed = self._seed + np_seed |
|
self._action_space.seed(self._seed) |
|
obs, _ = self._env.reset(seed=self._seed) |
|
elif hasattr(self, '_seed'): |
|
self._action_space.seed(self._seed) |
|
obs, _ = self._env.reset(seed=self._seed) |
|
else: |
|
obs, _ = self._env.reset() |
|
self._observation_space = self._env.observation_space |
|
self._eval_episode_return = 0 |
|
obs = to_ndarray(obs) |
|
|
|
action_mask = np.ones(self.action_space.n, 'int8') |
|
obs = {'observation': obs, 'action_mask': action_mask, 'to_play': -1} |
|
|
|
return obs |
|
|
|
def step(self, action: Union[int, np.ndarray]) -> BaseEnvTimestep: |
|
""" |
|
Overview: |
|
Perform a step in the environment using the provided action, and return the next state of the environment. |
|
The next state is encapsulated in a BaseEnvTimestep object, which includes the new observation, reward, |
|
done flag, and info dictionary. |
|
Arguments: |
|
- action (:obj:`Union[int, np.ndarray]`): The action to be performed in the environment. If the action is |
|
a 1-dimensional numpy array, it is squeezed to a 0-dimension array. |
|
Returns: |
|
- timestep (:obj:`BaseEnvTimestep`): An object containing the new observation, reward, done flag, |
|
and info dictionary. |
|
.. note:: |
|
- The cumulative reward (`_eval_episode_return`) is updated with the reward obtained in this step. |
|
- If the episode ends (done is True), the total reward for the episode is stored in the info dictionary |
|
under the key 'eval_episode_return'. |
|
- An action mask is created with ones, which represents the availability of each action in the action space. |
|
- Observations are returned in a dictionary format containing 'observation', 'action_mask', and 'to_play'. |
|
""" |
|
if isinstance(action, np.ndarray) and action.shape == (1,): |
|
action = action.squeeze() |
|
|
|
obs, rew, terminated, truncated, info = self._env.step(action) |
|
done = terminated or truncated |
|
|
|
self._eval_episode_return += rew |
|
if done: |
|
info['eval_episode_return'] = self._eval_episode_return |
|
|
|
action_mask = np.ones(self.action_space.n, 'int8') |
|
obs = {'observation': obs, 'action_mask': action_mask, 'to_play': -1} |
|
|
|
return BaseEnvTimestep(obs, rew, done, info) |
|
|
|
def close(self) -> None: |
|
""" |
|
Close the environment, and set the initialization flag to False. |
|
""" |
|
if self._init_flag: |
|
self._env.close() |
|
self._init_flag = False |
|
|
|
def seed(self, seed: int, dynamic_seed: bool = True) -> None: |
|
""" |
|
Set the seed for the environment's random number generator. Can handle both static and dynamic seeding. |
|
""" |
|
self._seed = seed |
|
self._dynamic_seed = dynamic_seed |
|
np.random.seed(self._seed) |
|
|
|
def enable_save_replay(self, replay_path: Optional[str] = None) -> None: |
|
""" |
|
Enable the saving of replay videos. If no replay path is given, a default is used. |
|
""" |
|
if replay_path is None: |
|
replay_path = './video' |
|
self._replay_path = replay_path |
|
|
|
def random_action(self) -> np.ndarray: |
|
""" |
|
Generate a random action using the action space's sample method. Returns a numpy array containing the action. |
|
""" |
|
random_action = self.action_space.sample() |
|
random_action = to_ndarray([random_action], dtype=np.int64) |
|
return random_action |
|
|
|
@property |
|
def observation_space(self) -> gym.spaces.Space: |
|
""" |
|
Property to access the observation space of the environment. |
|
""" |
|
return self._observation_space |
|
|
|
@property |
|
def action_space(self) -> gym.spaces.Space: |
|
""" |
|
Property to access the action space of the environment. |
|
""" |
|
return self._action_space |
|
|
|
@property |
|
def reward_space(self) -> gym.spaces.Space: |
|
""" |
|
Property to access the reward space of the environment. |
|
""" |
|
return self._reward_space |
|
|
|
def __repr__(self) -> str: |
|
""" |
|
String representation of the environment. |
|
""" |
|
return "LightZero CartPole Env" |
|
|