Spaces:
Running
on
Zero
Running
on
Zero
| """ | |
| Point Transformer - V3 Mode1 | |
| Pointcept detached version | |
| Author: Xiaoyang Wu (xiaoyang.wu.cs@gmail.com) | |
| Please cite our work if the code is helpful to you. | |
| """ | |
| import sys | |
| from functools import partial | |
| from addict import Dict | |
| import math | |
| import torch | |
| import torch.nn as nn | |
| import spconv.pytorch as spconv | |
| import torch_scatter | |
| from timm.models.layers import DropPath | |
| from collections import OrderedDict | |
| import numpy as np | |
| import torch.nn.functional as F | |
| try: | |
| import flash_attn | |
| except ImportError: | |
| flash_attn = None | |
| from model.serialization import encode | |
| from huggingface_hub import PyTorchModelHubMixin | |
| def offset2bincount(offset): | |
| return torch.diff( | |
| offset, prepend=torch.tensor([0], device=offset.device, dtype=torch.long) | |
| ) | |
| def offset2batch(offset): | |
| bincount = offset2bincount(offset) | |
| return torch.arange( | |
| len(bincount), device=offset.device, dtype=torch.long | |
| ).repeat_interleave(bincount) | |
| def batch2offset(batch): | |
| return torch.cumsum(batch.bincount(), dim=0).long() | |
| class Point(Dict): | |
| """ | |
| Point Structure of Pointcept | |
| A Point (point cloud) in Pointcept is a dictionary that contains various properties of | |
| a batched point cloud. The property with the following names have a specific definition | |
| as follows: | |
| - "coord": original coordinate of point cloud; | |
| - "grid_coord": grid coordinate for specific grid size (related to GridSampling); | |
| Point also support the following optional attributes: | |
| - "offset": if not exist, initialized as batch size is 1; | |
| - "batch": if not exist, initialized as batch size is 1; | |
| - "feat": feature of point cloud, default input of model; | |
| - "grid_size": Grid size of point cloud (related to GridSampling); | |
| (related to Serialization) | |
| - "serialized_depth": depth of serialization, 2 ** depth * grid_size describe the maximum of point cloud range; | |
| - "serialized_code": a list of serialization codes; | |
| - "serialized_order": a list of serialization order determined by code; | |
| - "serialized_inverse": a list of inverse mapping determined by code; | |
| (related to Sparsify: SpConv) | |
| - "sparse_shape": Sparse shape for Sparse Conv Tensor; | |
| - "sparse_conv_feat": SparseConvTensor init with information provide by Point; | |
| """ | |
| def __init__(self, *args, **kwargs): | |
| super().__init__(*args, **kwargs) | |
| # If one of "offset" or "batch" do not exist, generate by the existing one | |
| if "batch" not in self.keys() and "offset" in self.keys(): | |
| self["batch"] = offset2batch(self.offset) | |
| elif "offset" not in self.keys() and "batch" in self.keys(): | |
| self["offset"] = batch2offset(self.batch) | |
| def serialization(self, order="z", depth=None, shuffle_orders=False): | |
| """ | |
| Point Cloud Serialization | |
| relay on ["grid_coord" or "coord" + "grid_size", "batch", "feat"] | |
| """ | |
| assert "batch" in self.keys() | |
| if "grid_coord" not in self.keys(): | |
| # if you don't want to operate GridSampling in data augmentation, | |
| # please add the following augmentation into your pipline: | |
| # dict(type="Copy", keys_dict={"grid_size": 0.01}), | |
| # (adjust `grid_size` to what your want) | |
| assert {"grid_size", "coord"}.issubset(self.keys()) | |
| self["grid_coord"] = torch.div( | |
| self.coord - self.coord.min(0)[0], self.grid_size, rounding_mode="trunc" | |
| ).int() | |
| if depth is None: | |
| # Adaptive measure the depth of serialization cube (length = 2 ^ depth) | |
| depth = int(self.grid_coord.max()).bit_length() | |
| self["serialized_depth"] = depth | |
| # Maximum bit length for serialization code is 63 (int64) | |
| assert depth * 3 + len(self.offset).bit_length() <= 63 | |
| # Here we follow OCNN and set the depth limitation to 16 (48bit) for the point position. | |
| # Although depth is limited to less than 16, we can encode a 655.36^3 (2^16 * 0.01) meter^3 | |
| # cube with a grid size of 0.01 meter. We consider it is enough for the current stage. | |
| # We can unlock the limitation by optimizing the z-order encoding function if necessary. | |
| assert depth <= 16 | |
| # The serialization codes are arranged as following structures: | |
| # [Order1 ([n]), | |
| # Order2 ([n]), | |
| # ... | |
| # OrderN ([n])] (k, n) | |
| code = [ | |
| encode(self.grid_coord, self.batch, depth, order=order_) for order_ in order | |
| ] | |
| code = torch.stack(code) | |
| order = torch.argsort(code) | |
| inverse = torch.zeros_like(order).scatter_( | |
| dim=1, | |
| index=order, | |
| src=torch.arange(0, code.shape[1], device=order.device).repeat( | |
| code.shape[0], 1 | |
| ), | |
| ) | |
| if shuffle_orders: | |
| perm = torch.randperm(code.shape[0]) | |
| code = code[perm] | |
| order = order[perm] | |
| inverse = inverse[perm] | |
| self["serialized_code"] = code | |
| self["serialized_order"] = order | |
| self["serialized_inverse"] = inverse | |
| def sparsify(self, pad=96): | |
| """ | |
| Point Cloud Serialization | |
| Point cloud is sparse, here we use "sparsify" to specifically refer to | |
| preparing "spconv.SparseConvTensor" for SpConv. | |
| relay on ["grid_coord" or "coord" + "grid_size", "batch", "feat"] | |
| pad: padding sparse for sparse shape. | |
| """ | |
| assert {"feat", "batch"}.issubset(self.keys()) | |
| if "grid_coord" not in self.keys(): | |
| # if you don't want to operate GridSampling in data augmentation, | |
| # please add the following augmentation into your pipline: | |
| # dict(type="Copy", keys_dict={"grid_size": 0.01}), | |
| # (adjust `grid_size` to what your want) | |
| assert {"grid_size", "coord"}.issubset(self.keys()) | |
| self["grid_coord"] = torch.div( | |
| self.coord - self.coord.min(0)[0], self.grid_size, rounding_mode="trunc" | |
| ).int() | |
| if "sparse_shape" in self.keys(): | |
| sparse_shape = self.sparse_shape | |
| else: | |
| sparse_shape = torch.add( | |
| torch.max(self.grid_coord, dim=0).values, pad | |
| ).tolist() | |
| sparse_conv_feat = spconv.SparseConvTensor( | |
| features=self.feat, | |
| indices=torch.cat( | |
| [self.batch.unsqueeze(-1).int(), self.grid_coord.int()], dim=1 | |
| ).contiguous(), | |
| spatial_shape=sparse_shape, | |
| batch_size=self.batch[-1].tolist() + 1, | |
| ) | |
| self["sparse_shape"] = sparse_shape | |
| self["sparse_conv_feat"] = sparse_conv_feat | |
| class PointModule(nn.Module): | |
| r"""PointModule | |
| placeholder, all module subclass from this will take Point in PointSequential. | |
| """ | |
| def __init__(self, *args, **kwargs): | |
| super().__init__(*args, **kwargs) | |
| class PointSequential(PointModule): | |
| r"""A sequential container. | |
| Modules will be added to it in the order they are passed in the constructor. | |
| Alternatively, an ordered dict of modules can also be passed in. | |
| """ | |
| def __init__(self, *args, **kwargs): | |
| super().__init__() | |
| if len(args) == 1 and isinstance(args[0], OrderedDict): | |
| for key, module in args[0].items(): | |
| self.add_module(key, module) | |
| else: | |
| for idx, module in enumerate(args): | |
| self.add_module(str(idx), module) | |
| for name, module in kwargs.items(): | |
| if sys.version_info < (3, 6): | |
| raise ValueError("kwargs only supported in py36+") | |
| if name in self._modules: | |
| raise ValueError("name exists.") | |
| self.add_module(name, module) | |
| def __getitem__(self, idx): | |
| if not (-len(self) <= idx < len(self)): | |
| raise IndexError("index {} is out of range".format(idx)) | |
| if idx < 0: | |
| idx += len(self) | |
| it = iter(self._modules.values()) | |
| for i in range(idx): | |
| next(it) | |
| return next(it) | |
| def __len__(self): | |
| return len(self._modules) | |
| def add(self, module, name=None): | |
| if name is None: | |
| name = str(len(self._modules)) | |
| if name in self._modules: | |
| raise KeyError("name exists") | |
| self.add_module(name, module) | |
| def forward(self, input): | |
| for k, module in self._modules.items(): | |
| # Point module | |
| if isinstance(module, PointModule): | |
| input = module(input) | |
| # Spconv module | |
| elif spconv.modules.is_spconv_module(module): | |
| if isinstance(input, Point): | |
| input.sparse_conv_feat = module(input.sparse_conv_feat) | |
| input.feat = input.sparse_conv_feat.features | |
| else: | |
| input = module(input) | |
| # PyTorch module | |
| else: | |
| if isinstance(input, Point): | |
| input.feat = module(input.feat) | |
| if "sparse_conv_feat" in input.keys(): | |
| input.sparse_conv_feat = input.sparse_conv_feat.replace_feature( | |
| input.feat | |
| ) | |
| elif isinstance(input, spconv.SparseConvTensor): | |
| if input.indices.shape[0] != 0: | |
| input = input.replace_feature(module(input.features)) | |
| else: | |
| input = module(input) | |
| return input | |
| class PDNorm(PointModule): | |
| def __init__( | |
| self, | |
| num_features, | |
| norm_layer, | |
| context_channels=256, | |
| conditions=("ScanNet", "S3DIS", "Structured3D"), | |
| decouple=True, | |
| adaptive=False, | |
| ): | |
| super().__init__() | |
| self.conditions = conditions | |
| self.decouple = decouple | |
| self.adaptive = adaptive | |
| if self.decouple: | |
| self.norm = nn.ModuleList([norm_layer(num_features) for _ in conditions]) | |
| else: | |
| self.norm = norm_layer | |
| if self.adaptive: | |
| self.modulation = nn.Sequential( | |
| nn.SiLU(), nn.Linear(context_channels, 2 * num_features, bias=True) | |
| ) | |
| def forward(self, point): | |
| assert {"feat", "condition"}.issubset(point.keys()) | |
| if isinstance(point.condition, str): | |
| condition = point.condition | |
| else: | |
| condition = point.condition[0] | |
| if self.decouple: | |
| assert condition in self.conditions | |
| norm = self.norm[self.conditions.index(condition)] | |
| else: | |
| norm = self.norm | |
| point.feat = norm(point.feat) | |
| if self.adaptive: | |
| assert "context" in point.keys() | |
| shift, scale = self.modulation(point.context).chunk(2, dim=1) | |
| point.feat = point.feat * (1.0 + scale) + shift | |
| return point | |
| class RPE(torch.nn.Module): | |
| def __init__(self, patch_size, num_heads): | |
| super().__init__() | |
| self.patch_size = patch_size | |
| self.num_heads = num_heads | |
| self.pos_bnd = int((4 * patch_size) ** (1 / 3) * 2) | |
| self.rpe_num = 2 * self.pos_bnd + 1 | |
| self.rpe_table = torch.nn.Parameter(torch.zeros(3 * self.rpe_num, num_heads)) | |
| torch.nn.init.trunc_normal_(self.rpe_table, std=0.02) | |
| def forward(self, coord): | |
| idx = ( | |
| coord.clamp(-self.pos_bnd, self.pos_bnd) # clamp into bnd | |
| + self.pos_bnd # relative position to positive index | |
| + torch.arange(3, device=coord.device) * self.rpe_num # x, y, z stride | |
| ) | |
| out = self.rpe_table.index_select(0, idx.reshape(-1)) | |
| out = out.view(idx.shape + (-1,)).sum(3) | |
| out = out.permute(0, 3, 1, 2) # (N, K, K, H) -> (N, H, K, K) | |
| return out | |
| class SerializedAttention(PointModule): | |
| def __init__( | |
| self, | |
| channels, | |
| num_heads, | |
| patch_size, | |
| qkv_bias=True, | |
| qk_scale=None, | |
| attn_drop=0.0, | |
| proj_drop=0.0, | |
| order_index=0, | |
| enable_rpe=False, | |
| enable_flash=True, | |
| upcast_attention=True, | |
| upcast_softmax=True, | |
| ): | |
| super().__init__() | |
| assert channels % num_heads == 0 | |
| self.channels = channels | |
| self.num_heads = num_heads | |
| self.scale = qk_scale or (channels // num_heads) ** -0.5 | |
| self.order_index = order_index | |
| self.upcast_attention = upcast_attention | |
| self.upcast_softmax = upcast_softmax | |
| self.enable_rpe = enable_rpe | |
| self.enable_flash = enable_flash | |
| if enable_flash: | |
| assert ( | |
| enable_rpe is False | |
| ), "Set enable_rpe to False when enable Flash Attention" | |
| assert ( | |
| upcast_attention is False | |
| ), "Set upcast_attention to False when enable Flash Attention" | |
| assert ( | |
| upcast_softmax is False | |
| ), "Set upcast_softmax to False when enable Flash Attention" | |
| #assert flash_attn is not None, "Make sure flash_attn is installed." | |
| self.patch_size = patch_size | |
| self.attn_drop = attn_drop | |
| else: | |
| # when disable flash attention, we still don't want to use mask | |
| # consequently, patch size will auto set to the | |
| # min number of patch_size_max and number of points | |
| self.patch_size_max = patch_size | |
| self.patch_size = 0 | |
| self.attn_drop = torch.nn.Dropout(attn_drop) | |
| self.qkv = torch.nn.Linear(channels, channels * 3, bias=qkv_bias) | |
| self.proj = torch.nn.Linear(channels, channels) | |
| self.proj_drop = torch.nn.Dropout(proj_drop) | |
| self.softmax = torch.nn.Softmax(dim=-1) | |
| self.rpe = RPE(patch_size, num_heads) if self.enable_rpe else None | |
| def get_rel_pos(self, point, order): | |
| K = self.patch_size | |
| rel_pos_key = f"rel_pos_{self.order_index}" | |
| if rel_pos_key not in point.keys(): | |
| grid_coord = point.grid_coord[order] | |
| grid_coord = grid_coord.reshape(-1, K, 3) | |
| point[rel_pos_key] = grid_coord.unsqueeze(2) - grid_coord.unsqueeze(1) | |
| return point[rel_pos_key] | |
| def get_padding_and_inverse(self, point): | |
| pad_key = "pad" | |
| unpad_key = "unpad" | |
| cu_seqlens_key = "cu_seqlens_key" | |
| if ( | |
| pad_key not in point.keys() | |
| or unpad_key not in point.keys() | |
| or cu_seqlens_key not in point.keys() | |
| ): | |
| offset = point.offset | |
| bincount = offset2bincount(offset) | |
| bincount_pad = ( | |
| torch.div( | |
| bincount + self.patch_size - 1, | |
| self.patch_size, | |
| rounding_mode="trunc", | |
| ) | |
| * self.patch_size | |
| ) | |
| # only pad point when num of points larger than patch_size | |
| mask_pad = bincount > self.patch_size | |
| bincount_pad = ~mask_pad * bincount + mask_pad * bincount_pad | |
| _offset = nn.functional.pad(offset, (1, 0)) | |
| _offset_pad = nn.functional.pad(torch.cumsum(bincount_pad, dim=0), (1, 0)) | |
| pad = torch.arange(_offset_pad[-1], device=offset.device) | |
| unpad = torch.arange(_offset[-1], device=offset.device) | |
| cu_seqlens = [] | |
| for i in range(len(offset)): | |
| unpad[_offset[i] : _offset[i + 1]] += _offset_pad[i] - _offset[i] | |
| if bincount[i] != bincount_pad[i]: | |
| pad[ | |
| _offset_pad[i + 1] | |
| - self.patch_size | |
| + (bincount[i] % self.patch_size) : _offset_pad[i + 1] | |
| ] = pad[ | |
| _offset_pad[i + 1] | |
| - 2 * self.patch_size | |
| + (bincount[i] % self.patch_size) : _offset_pad[i + 1] | |
| - self.patch_size | |
| ] | |
| pad[_offset_pad[i] : _offset_pad[i + 1]] -= _offset_pad[i] - _offset[i] | |
| cu_seqlens.append( | |
| torch.arange( | |
| _offset_pad[i], | |
| _offset_pad[i + 1], | |
| step=self.patch_size, | |
| dtype=torch.int32, | |
| device=offset.device, | |
| ) | |
| ) | |
| point[pad_key] = pad | |
| point[unpad_key] = unpad | |
| point[cu_seqlens_key] = nn.functional.pad( | |
| torch.concat(cu_seqlens), (0, 1), value=_offset_pad[-1] | |
| ) | |
| return point[pad_key], point[unpad_key], point[cu_seqlens_key] | |
| def forward(self, point): | |
| if not self.enable_flash: | |
| self.patch_size = min( | |
| offset2bincount(point.offset).min().tolist(), self.patch_size_max | |
| ) | |
| H = self.num_heads | |
| K = self.patch_size | |
| C = self.channels | |
| pad, unpad, cu_seqlens = self.get_padding_and_inverse(point) | |
| order = point.serialized_order[self.order_index][pad] | |
| inverse = unpad[point.serialized_inverse[self.order_index]] | |
| # padding and reshape feat and batch for serialized point patch | |
| qkv = self.qkv(point.feat)[order] | |
| if not self.enable_flash: | |
| # encode and reshape qkv: (N', K, 3, H, C') => (3, N', H, K, C') | |
| q, k, v = ( | |
| qkv.reshape(-1, K, 3, H, C // H).permute(2, 0, 3, 1, 4).unbind(dim=0) | |
| ) | |
| # attn | |
| if self.upcast_attention: | |
| q = q.float() | |
| k = k.float() | |
| attn = (q * self.scale) @ k.transpose(-2, -1) # (N', H, K, K) | |
| if self.enable_rpe: | |
| attn = attn + self.rpe(self.get_rel_pos(point, order)) | |
| if self.upcast_softmax: | |
| attn = attn.float() | |
| attn = self.softmax(attn) | |
| attn = self.attn_drop(attn).to(qkv.dtype) | |
| feat = (attn @ v).transpose(1, 2).reshape(-1, C) | |
| else: | |
| feat = flash_attn.flash_attn_varlen_qkvpacked_func( | |
| qkv.half().reshape(-1, 3, H, C // H), | |
| cu_seqlens, | |
| max_seqlen=self.patch_size, | |
| dropout_p=self.attn_drop if self.training else 0, | |
| softmax_scale=self.scale, | |
| ).reshape(-1, C) | |
| feat = feat.to(qkv.dtype) | |
| feat = feat[inverse] | |
| # ffn | |
| feat = self.proj(feat) | |
| feat = self.proj_drop(feat) | |
| point.feat = feat | |
| return point | |
| class MLP(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels, | |
| hidden_channels=None, | |
| out_channels=None, | |
| act_layer=nn.GELU, | |
| drop=0.0, | |
| ): | |
| super().__init__() | |
| out_channels = out_channels or in_channels | |
| hidden_channels = hidden_channels or in_channels | |
| self.fc1 = nn.Linear(in_channels, hidden_channels) | |
| self.act = act_layer() | |
| self.fc2 = nn.Linear(hidden_channels, out_channels) | |
| self.drop = nn.Dropout(drop) | |
| def forward(self, x): | |
| x = self.fc1(x) | |
| x = self.act(x) | |
| x = self.drop(x) | |
| x = self.fc2(x) | |
| x = self.drop(x) | |
| return x | |
| class Block(PointModule): | |
| def __init__( | |
| self, | |
| channels, | |
| num_heads, | |
| patch_size=48, | |
| mlp_ratio=4.0, | |
| qkv_bias=True, | |
| qk_scale=None, | |
| attn_drop=0.0, | |
| proj_drop=0.0, | |
| drop_path=0.0, | |
| norm_layer=nn.LayerNorm, | |
| act_layer=nn.GELU, | |
| pre_norm=True, | |
| order_index=0, | |
| cpe_indice_key=None, | |
| enable_rpe=False, | |
| enable_flash=True, | |
| upcast_attention=True, | |
| upcast_softmax=True, | |
| ): | |
| super().__init__() | |
| self.channels = channels | |
| self.pre_norm = pre_norm | |
| self.cpe = PointSequential( | |
| spconv.SubMConv3d( | |
| channels, | |
| channels, | |
| kernel_size=3, | |
| bias=True, | |
| indice_key=cpe_indice_key, | |
| ), | |
| nn.Linear(channels, channels), | |
| norm_layer(channels), | |
| ) | |
| self.norm1 = PointSequential(norm_layer(channels)) | |
| self.attn = SerializedAttention( | |
| channels=channels, | |
| patch_size=patch_size, | |
| num_heads=num_heads, | |
| qkv_bias=qkv_bias, | |
| qk_scale=qk_scale, | |
| attn_drop=attn_drop, | |
| proj_drop=proj_drop, | |
| order_index=order_index, | |
| enable_rpe=enable_rpe, | |
| enable_flash=enable_flash, | |
| upcast_attention=upcast_attention, | |
| upcast_softmax=upcast_softmax, | |
| ) | |
| self.norm2 = PointSequential(norm_layer(channels)) | |
| self.mlp = PointSequential( | |
| MLP( | |
| in_channels=channels, | |
| hidden_channels=int(channels * mlp_ratio), | |
| out_channels=channels, | |
| act_layer=act_layer, | |
| drop=proj_drop, | |
| ) | |
| ) | |
| self.drop_path = PointSequential( | |
| DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | |
| ) | |
| def forward(self, point: Point): | |
| shortcut = point.feat | |
| point = self.cpe(point) | |
| point.feat = shortcut + point.feat | |
| shortcut = point.feat | |
| if self.pre_norm: | |
| point = self.norm1(point) | |
| point = self.drop_path(self.attn(point)) | |
| point.feat = shortcut + point.feat | |
| if not self.pre_norm: | |
| point = self.norm1(point) | |
| shortcut = point.feat | |
| if self.pre_norm: | |
| point = self.norm2(point) | |
| point = self.drop_path(self.mlp(point)) | |
| point.feat = shortcut + point.feat | |
| if not self.pre_norm: | |
| point = self.norm2(point) | |
| point.sparse_conv_feat = point.sparse_conv_feat.replace_feature(point.feat) | |
| #point.sparse_conv_feat.replace_feature(point.feat) old version | |
| return point | |
| class SerializedPooling(PointModule): | |
| def __init__( | |
| self, | |
| in_channels, | |
| out_channels, | |
| stride=2, | |
| norm_layer=None, | |
| act_layer=None, | |
| reduce="max", | |
| shuffle_orders=True, | |
| traceable=True, # record parent and cluster | |
| ): | |
| super().__init__() | |
| self.in_channels = in_channels | |
| self.out_channels = out_channels | |
| assert stride == 2 ** (math.ceil(stride) - 1).bit_length() # 2, 4, 8 | |
| # TODO: add support to grid pool (any stride) | |
| self.stride = stride | |
| assert reduce in ["sum", "mean", "min", "max"] | |
| self.reduce = reduce | |
| self.shuffle_orders = shuffle_orders | |
| self.traceable = traceable | |
| self.proj = nn.Linear(in_channels, out_channels) | |
| if norm_layer is not None: | |
| self.norm = PointSequential(norm_layer(out_channels)) | |
| if act_layer is not None: | |
| self.act = PointSequential(act_layer()) | |
| def forward(self, point: Point): | |
| pooling_depth = (math.ceil(self.stride) - 1).bit_length() | |
| if pooling_depth > point.serialized_depth: | |
| pooling_depth = 0 | |
| assert { | |
| "serialized_code", | |
| "serialized_order", | |
| "serialized_inverse", | |
| "serialized_depth", | |
| }.issubset( | |
| point.keys() | |
| ), "Run point.serialization() point cloud before SerializedPooling" | |
| code = point.serialized_code >> pooling_depth * 3 # if pooling depth=1, right shift 3 i.e. divide by 8 | |
| # this is divide by 2^(pooling_depth+2) i.e. 4*stride | |
| # this is because it's 3d, shift index by 8 means half | |
| code_, cluster, counts = torch.unique( | |
| code[0], | |
| sorted=True, | |
| return_inverse=True, | |
| return_counts=True, | |
| ) | |
| # indices of point sorted by cluster, for torch_scatter.segment_csr | |
| _, indices = torch.sort(cluster) | |
| # index pointer for sorted point, for torch_scatter.segment_csr | |
| idx_ptr = torch.cat([counts.new_zeros(1), torch.cumsum(counts, dim=0)]) | |
| # head_indices of each cluster, for reduce attr e.g. code, batch | |
| head_indices = indices[idx_ptr[:-1]] | |
| # generate down code, order, inverse | |
| code = code[:, head_indices] # these are the unique entries | |
| order = torch.argsort(code) | |
| inverse = torch.zeros_like(order).scatter_( | |
| dim=1, | |
| index=order, | |
| src=torch.arange(0, code.shape[1], device=order.device).repeat( | |
| code.shape[0], 1 | |
| ), | |
| ) | |
| if self.shuffle_orders: | |
| perm = torch.randperm(code.shape[0]) | |
| code = code[perm] | |
| order = order[perm] | |
| inverse = inverse[perm] | |
| # coordinate is also halved - the space is sparser | |
| # collect information | |
| point_dict = Dict( | |
| feat=torch_scatter.segment_csr( | |
| self.proj(point.feat)[indices], idx_ptr, reduce=self.reduce | |
| ), | |
| coord=torch_scatter.segment_csr( | |
| point.coord[indices], idx_ptr, reduce="mean" | |
| ), | |
| grid_coord=point.grid_coord[head_indices] >> pooling_depth, | |
| serialized_code=code, | |
| serialized_order=order, | |
| serialized_inverse=inverse, | |
| serialized_depth=point.serialized_depth - pooling_depth, | |
| batch=point.batch[head_indices], | |
| ) | |
| if "condition" in point.keys(): | |
| point_dict["condition"] = point.condition | |
| if "context" in point.keys(): | |
| point_dict["context"] = point.context | |
| if self.traceable: | |
| point_dict["pooling_inverse"] = cluster | |
| point_dict["pooling_parent"] = point | |
| point = Point(point_dict) | |
| if self.norm is not None: | |
| point = self.norm(point) | |
| if self.act is not None: | |
| point = self.act(point) | |
| point.sparsify() | |
| return point | |
| class SerializedUnpooling(PointModule): | |
| def __init__( | |
| self, | |
| in_channels, | |
| skip_channels, | |
| out_channels, | |
| norm_layer=None, | |
| act_layer=None, | |
| traceable=False, # record parent and cluster | |
| ): | |
| super().__init__() | |
| self.proj = PointSequential(nn.Linear(in_channels, out_channels)) | |
| self.proj_skip = PointSequential(nn.Linear(skip_channels, out_channels)) | |
| if norm_layer is not None: | |
| self.proj.add(norm_layer(out_channels)) | |
| self.proj_skip.add(norm_layer(out_channels)) | |
| if act_layer is not None: | |
| self.proj.add(act_layer()) | |
| self.proj_skip.add(act_layer()) | |
| self.traceable = traceable | |
| def forward(self, point): | |
| assert "pooling_parent" in point.keys() | |
| assert "pooling_inverse" in point.keys() | |
| parent = point.pop("pooling_parent") | |
| inverse = point.pop("pooling_inverse") | |
| point = self.proj(point) | |
| parent = self.proj_skip(parent) | |
| parent.feat = parent.feat + point.feat[inverse] | |
| if self.traceable: | |
| parent["unpooling_parent"] = point | |
| return parent | |
| class Embedding(PointModule): | |
| def __init__( | |
| self, | |
| in_channels, | |
| embed_channels, | |
| norm_layer=None, | |
| act_layer=None, | |
| ): | |
| super().__init__() | |
| self.in_channels = in_channels | |
| self.embed_channels = embed_channels | |
| # TODO: check remove spconv | |
| self.stem = PointSequential( | |
| conv=spconv.SubMConv3d( | |
| in_channels, | |
| embed_channels, | |
| kernel_size=5, | |
| padding=1, | |
| bias=False, | |
| indice_key="stem", | |
| ) | |
| ) | |
| if norm_layer is not None: | |
| self.stem.add(norm_layer(embed_channels), name="norm") | |
| if act_layer is not None: | |
| self.stem.add(act_layer(), name="act") | |
| def forward(self, point: Point): | |
| point = self.stem(point) | |
| return point | |
| class PointTransformerV3(PointModule): | |
| def __init__( | |
| self, | |
| in_channels=6, | |
| order=("z", "z-trans", "hilbert", "hilbert-trans"), | |
| stride=(2, 2, 2, 2), | |
| enc_depths=(2, 2, 2, 6, 2), | |
| enc_channels=(32, 64, 128, 256, 512), | |
| enc_num_head=(2, 4, 8, 16, 32), | |
| enc_patch_size=(1024, 1024, 1024, 1024, 1024), | |
| dec_depths=(2, 2, 2, 2), | |
| dec_channels=(64, 64, 128, 256), | |
| dec_num_head=(4, 4, 8, 16), | |
| dec_patch_size=(1024, 1024, 1024, 1024), | |
| mlp_ratio=4, | |
| qkv_bias=True, | |
| qk_scale=None, | |
| attn_drop=0.0, | |
| proj_drop=0.0, | |
| drop_path=0.3, | |
| pre_norm=True, | |
| shuffle_orders=True, | |
| enable_rpe=False, | |
| enable_flash=False,#True, | |
| upcast_attention=False, | |
| upcast_softmax=False, | |
| cls_mode=False, | |
| pdnorm_bn=False, | |
| pdnorm_ln=False, | |
| pdnorm_decouple=True, | |
| pdnorm_adaptive=False, | |
| pdnorm_affine=True, | |
| pdnorm_conditions=("ScanNet", "S3DIS", "Structured3D"), | |
| ): | |
| super().__init__() | |
| self.num_stages = len(enc_depths) | |
| self.order = [order] if isinstance(order, str) else order | |
| self.cls_mode = cls_mode | |
| self.shuffle_orders = shuffle_orders | |
| assert self.num_stages == len(stride) + 1 | |
| assert self.num_stages == len(enc_depths) | |
| assert self.num_stages == len(enc_channels) | |
| assert self.num_stages == len(enc_num_head) | |
| assert self.num_stages == len(enc_patch_size) | |
| assert self.cls_mode or self.num_stages == len(dec_depths) + 1 | |
| assert self.cls_mode or self.num_stages == len(dec_channels) + 1 | |
| assert self.cls_mode or self.num_stages == len(dec_num_head) + 1 | |
| assert self.cls_mode or self.num_stages == len(dec_patch_size) + 1 | |
| # norm layers | |
| if pdnorm_bn: | |
| bn_layer = partial( | |
| PDNorm, | |
| norm_layer=partial( | |
| nn.BatchNorm1d, eps=1e-3, momentum=0.01, affine=pdnorm_affine | |
| ), | |
| conditions=pdnorm_conditions, | |
| decouple=pdnorm_decouple, | |
| adaptive=pdnorm_adaptive, | |
| ) | |
| else: | |
| bn_layer = partial(nn.BatchNorm1d, eps=1e-3, momentum=0.01) | |
| if pdnorm_ln: | |
| ln_layer = partial( | |
| PDNorm, | |
| norm_layer=partial(nn.LayerNorm, elementwise_affine=pdnorm_affine), | |
| conditions=pdnorm_conditions, | |
| decouple=pdnorm_decouple, | |
| adaptive=pdnorm_adaptive, | |
| ) | |
| else: | |
| ln_layer = nn.LayerNorm | |
| # activation layers | |
| act_layer = nn.GELU | |
| self.embedding = Embedding( | |
| in_channels=in_channels, | |
| embed_channels=enc_channels[0], | |
| norm_layer=bn_layer, | |
| act_layer=act_layer, | |
| ) | |
| # encoder | |
| enc_drop_path = [ | |
| x.item() for x in torch.linspace(0, drop_path, sum(enc_depths)) | |
| ] | |
| self.enc = PointSequential() | |
| for s in range(self.num_stages): | |
| enc_drop_path_ = enc_drop_path[ | |
| sum(enc_depths[:s]) : sum(enc_depths[: s + 1]) | |
| ] | |
| enc = PointSequential() | |
| if s > 0: | |
| enc.add( | |
| SerializedPooling( | |
| in_channels=enc_channels[s - 1], | |
| out_channels=enc_channels[s], | |
| stride=stride[s - 1], | |
| norm_layer=bn_layer, | |
| act_layer=act_layer, | |
| ), | |
| name="down", | |
| ) | |
| for i in range(enc_depths[s]): | |
| enc.add( | |
| Block( | |
| channels=enc_channels[s], | |
| num_heads=enc_num_head[s], | |
| patch_size=enc_patch_size[s], | |
| mlp_ratio=mlp_ratio, | |
| qkv_bias=qkv_bias, | |
| qk_scale=qk_scale, | |
| attn_drop=attn_drop, | |
| proj_drop=proj_drop, | |
| drop_path=enc_drop_path_[i], | |
| norm_layer=ln_layer, | |
| act_layer=act_layer, | |
| pre_norm=pre_norm, | |
| order_index=i % len(self.order), | |
| cpe_indice_key=f"stage{s}", | |
| enable_rpe=enable_rpe, | |
| enable_flash=enable_flash, | |
| upcast_attention=upcast_attention, | |
| upcast_softmax=upcast_softmax, | |
| ), | |
| name=f"block{i}", | |
| ) | |
| if len(enc) != 0: | |
| self.enc.add(module=enc, name=f"enc{s}") | |
| # decoder | |
| if not self.cls_mode: | |
| dec_drop_path = [ | |
| x.item() for x in torch.linspace(0, drop_path, sum(dec_depths)) | |
| ] | |
| self.dec = PointSequential() | |
| dec_channels = list(dec_channels) + [enc_channels[-1]] | |
| for s in reversed(range(self.num_stages - 1)): | |
| dec_drop_path_ = dec_drop_path[ | |
| sum(dec_depths[:s]) : sum(dec_depths[: s + 1]) | |
| ] | |
| dec_drop_path_.reverse() | |
| dec = PointSequential() | |
| dec.add( | |
| SerializedUnpooling( | |
| in_channels=dec_channels[s + 1], | |
| skip_channels=enc_channels[s], | |
| out_channels=dec_channels[s], | |
| norm_layer=bn_layer, | |
| act_layer=act_layer, | |
| ), | |
| name="up", | |
| ) | |
| for i in range(dec_depths[s]): | |
| dec.add( | |
| Block( | |
| channels=dec_channels[s], | |
| num_heads=dec_num_head[s], | |
| patch_size=dec_patch_size[s], | |
| mlp_ratio=mlp_ratio, | |
| qkv_bias=qkv_bias, | |
| qk_scale=qk_scale, | |
| attn_drop=attn_drop, | |
| proj_drop=proj_drop, | |
| drop_path=dec_drop_path_[i], | |
| norm_layer=ln_layer, | |
| act_layer=act_layer, | |
| pre_norm=pre_norm, | |
| order_index=i % len(self.order), | |
| cpe_indice_key=f"stage{s}", | |
| enable_rpe=enable_rpe, | |
| enable_flash=enable_flash, | |
| upcast_attention=upcast_attention, | |
| upcast_softmax=upcast_softmax, | |
| ), | |
| name=f"block{i}", | |
| ) | |
| self.dec.add(module=dec, name=f"dec{s}") | |
| def forward(self, data_dict): | |
| """ | |
| A data_dict is a dictionary containing properties of a batched point cloud. | |
| It should contain the following properties for PTv3: | |
| 1. "feat": feature of point cloud | |
| 2. "grid_coord": discrete coordinate after grid sampling (voxelization) or "coord" + "grid_size" | |
| 3. "offset" or "batch": https://github.com/Pointcept/Pointcept?tab=readme-ov-file#offset | |
| """ | |
| point = Point(data_dict) | |
| point.serialization(order=self.order, shuffle_orders=self.shuffle_orders) | |
| point.sparsify() | |
| point = self.embedding(point) | |
| point = self.enc(point) #23,512 | |
| if not self.cls_mode: | |
| point = self.dec(point) #n_pts, 64 | |
| return point | |
| class PointSemSeg(nn.Module): | |
| def __init__(self, args, dim_output, emb=64, init_logit_scale=np.log(1 / 0.07)): | |
| super().__init__() | |
| self.dim_output = dim_output | |
| # define the extractor | |
| self.extractor = PointTransformerV3() # this outputs a 64-dim feature per point | |
| # define logit scale | |
| self.ln_logit_scale = nn.Parameter(torch.ones([]) * init_logit_scale) | |
| self.fc1 = nn.Linear(emb, emb) | |
| self.fc2 = nn.Linear(emb, emb) | |
| self.fc3 = nn.Linear(emb, emb) | |
| self.fc4 = nn.Linear(emb, dim_output) | |
| def distillation_head(self, x): | |
| x = F.relu(self.fc1(x)) | |
| x = F.relu(self.fc2(x)) | |
| x = F.relu(self.fc3(x)) | |
| x = self.fc4(x) | |
| return x | |
| def freeze_extractor(self): | |
| for param in self.extractor.parameters(): | |
| param.requires_grad = False | |
| def forward(self, x, return_pts_feat=False): | |
| pointall = self.extractor(x) | |
| feature = pointall["feat"] #[n_pts_cur_batch, 64] | |
| x = self.distillation_head(feature) #[n_pts_cur_batch, dim_out] | |
| if return_pts_feat: | |
| return x, feature | |
| else: | |
| return x | |
| class Find3D(nn.Module, PyTorchModelHubMixin): | |
| def __init__(self, dim_output, emb=64, init_logit_scale=np.log(1 / 0.07)): | |
| super().__init__() | |
| self.dim_output = dim_output | |
| # define the extractor | |
| self.extractor = PointTransformerV3() # this outputs a 64-dim feature per point | |
| # define logit scale | |
| self.ln_logit_scale = nn.Parameter(torch.ones([]) * init_logit_scale) | |
| self.fc1 = nn.Linear(emb, emb) | |
| self.fc2 = nn.Linear(emb, emb) | |
| self.fc3 = nn.Linear(emb, emb) | |
| self.fc4 = nn.Linear(emb, dim_output) | |
| def distillation_head(self, x): | |
| x = F.relu(self.fc1(x)) | |
| x = F.relu(self.fc2(x)) | |
| x = F.relu(self.fc3(x)) | |
| x = self.fc4(x) | |
| return x | |
| def freeze_extractor(self): | |
| for param in self.extractor.parameters(): | |
| param.requires_grad = False | |
| def forward(self, x, return_pts_feat=False): | |
| pointall = self.extractor(x) | |
| feature = pointall["feat"] #[n_pts_cur_batch, 64] | |
| x = self.distillation_head(feature) #[n_pts_cur_batch, dim_out] | |
| if return_pts_feat: | |
| return x, feature | |
| else: | |
| return x |