ziqima's picture
initial commit
4893ce0
"""
Preprocessing Script for ScanNet++
modified from official preprocess code.
Author: Xiaoyang Wu (xiaoyang.wu.cs@gmail.com)
Please cite our work if the code is helpful to you.
"""
import argparse
import json
import numpy as np
import pandas as pd
import open3d as o3d
import multiprocessing as mp
from collections import OrderedDict
from concurrent.futures import ProcessPoolExecutor
from itertools import repeat
from pathlib import Path
def parse_scene(
name,
split,
dataset_root,
output_root,
label_mapping,
class2idx,
ignore_index=-1,
):
print(f"Parsing scene {name} in {split} split")
dataset_root = Path(dataset_root)
output_root = Path(output_root)
scene_path = dataset_root / "data" / name / "scans"
mesh_path = scene_path / "mesh_aligned_0.05.ply"
segs_path = scene_path / "segments.json"
anno_path = scene_path / "segments_anno.json"
# load mesh vertices and colors
mesh = o3d.io.read_triangle_mesh(str(mesh_path))
# extract mesh information
mesh.compute_vertex_normals(normalized=True)
coord = np.array(mesh.vertices).astype(np.float32)
color = (np.array(mesh.vertex_colors) * 255).astype(np.uint8)
normal = np.array(mesh.vertex_normals).astype(np.float32)
save_path = output_root / split / name
save_path.mkdir(parents=True, exist_ok=True)
np.save(save_path / "coord.npy", coord)
np.save(save_path / "color.npy", color)
np.save(save_path / "normal.npy", normal)
if split == "test":
return
# get label on vertices
# load segments = vertices per segment ID
with open(segs_path) as f:
segments = json.load(f)
# load anno = (instance, groups of segments)
with open(anno_path) as f:
anno = json.load(f)
seg_indices = np.array(segments["segIndices"], dtype=np.uint32)
num_vertices = len(seg_indices)
assert num_vertices == len(coord)
semantic_gt = np.ones((num_vertices, 3), dtype=np.int16) * ignore_index
instance_gt = np.ones((num_vertices, 3), dtype=np.int16) * ignore_index
# number of labels are used per vertex. initially 0
# increment each time a new label is added
instance_size = np.ones((num_vertices, 3), dtype=np.int16) * np.inf
# keep track of the size of the instance (#vertices) assigned to each vertex
# later, keep the label of the smallest instance for major label of vertices
# store inf initially so that we can pick the smallest instance
labels_used = np.zeros(num_vertices, dtype=np.int16)
for idx, instance in enumerate(anno["segGroups"]):
label = instance["label"]
instance["label_orig"] = label
# remap label
instance["label"] = label_mapping.get(label, None)
instance["label_index"] = class2idx.get(label, ignore_index)
if instance["label_index"] == ignore_index:
continue
# get all the vertices with segment index in this instance
# and max number of labels not yet applied
mask = np.isin(seg_indices, instance["segments"]) & (labels_used < 3)
size = mask.sum()
if size == 0:
continue
# get the position to add the label - 0, 1, 2
label_position = labels_used[mask]
semantic_gt[mask, label_position] = instance["label_index"]
# store all valid instance (include ignored instance)
instance_gt[mask, label_position] = instance["objectId"]
instance_size[mask, label_position] = size
labels_used[mask] += 1
# major label is the label of smallest instance for each vertex
# use major label for single class segmentation
# shift major label to the first column
mask = labels_used > 1
if mask.sum() > 0:
major_label_position = np.argmin(instance_size[mask], axis=1)
major_semantic_label = semantic_gt[mask, major_label_position]
semantic_gt[mask, major_label_position] = semantic_gt[:, 0][mask]
semantic_gt[:, 0][mask] = major_semantic_label
major_instance_label = instance_gt[mask, major_label_position]
instance_gt[mask, major_label_position] = instance_gt[:, 0][mask]
instance_gt[:, 0][mask] = major_instance_label
np.save(save_path / "segment.npy", semantic_gt)
np.save(save_path / "instance.npy", instance_gt)
def filter_map_classes(mapping, count_thresh, count_type, mapping_type):
mapping = mapping[mapping[count_type] >= count_thresh]
if mapping_type == "semantic":
map_key = "semantic_map_to"
elif mapping_type == "instance":
map_key = "instance_map_to"
else:
raise NotImplementedError
# create a dict with classes to be mapped
# classes that don't have mapping are entered as x->x
# otherwise x->y
map_dict = OrderedDict()
for i in range(mapping.shape[0]):
row = mapping.iloc[i]
class_name = row["class"]
map_target = row[map_key]
# map to None or some other label -> don't add this class to the label list
try:
if len(map_target) > 0:
# map to None -> don't use this class
if map_target == "None":
pass
else:
# map to something else -> use this class
map_dict[class_name] = map_target
except TypeError:
# nan values -> no mapping, keep label as is
if class_name not in map_dict:
map_dict[class_name] = class_name
return map_dict
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--dataset_root",
required=True,
help="Path to the ScanNet++ dataset containing data/metadata/splits.",
)
parser.add_argument(
"--output_root",
required=True,
help="Output path where train/val/test folders will be located.",
)
parser.add_argument(
"--ignore_index",
default=-1,
type=int,
help="Default ignore index.",
)
parser.add_argument(
"--num_workers",
default=mp.cpu_count(),
type=int,
help="Num workers for preprocessing.",
)
config = parser.parse_args()
print("Loading meta data...")
config.dataset_root = Path(config.dataset_root)
config.output_root = Path(config.output_root)
train_list = np.loadtxt(
config.dataset_root / "splits" / "nvs_sem_train.txt",
dtype=str,
)
print("Num samples in training split:", len(train_list))
val_list = np.loadtxt(
config.dataset_root / "splits" / "nvs_sem_val.txt",
dtype=str,
)
print("Num samples in validation split:", len(val_list))
test_list = np.loadtxt(
config.dataset_root / "splits" / "sem_test.txt",
dtype=str,
)
print("Num samples in testing split:", len(test_list))
data_list = np.concatenate([train_list, val_list, test_list])
split_list = np.concatenate(
[
np.full_like(train_list, "train"),
np.full_like(val_list, "val"),
np.full_like(test_list, "test"),
]
)
# Parsing label information and mapping
segment_class_names = np.loadtxt(
config.dataset_root / "metadata" / "semantic_benchmark" / "top100.txt",
dtype=str,
delimiter=".", # dummy delimiter to replace " "
)
print("Num classes in segment class list:", len(segment_class_names))
instance_class_names = np.loadtxt(
config.dataset_root / "metadata" / "semantic_benchmark" / "top100_instance.txt",
dtype=str,
delimiter=".", # dummy delimiter to replace " "
)
print("Num classes in instance class list:", len(instance_class_names))
label_mapping = pd.read_csv(
config.dataset_root / "metadata" / "semantic_benchmark" / "map_benchmark.csv"
)
label_mapping = filter_map_classes(
label_mapping, count_thresh=0, count_type="count", mapping_type="semantic"
)
class2idx = {
class_name: idx for (idx, class_name) in enumerate(segment_class_names)
}
print("Processing scenes...")
pool = ProcessPoolExecutor(max_workers=config.num_workers)
_ = list(
pool.map(
parse_scene,
data_list,
split_list,
repeat(config.dataset_root),
repeat(config.output_root),
repeat(label_mapping),
repeat(class2idx),
repeat(config.ignore_index),
)
)
pool.shutdown()