Spaces:
Sleeping
Sleeping
""" Split BatchNorm | |
A PyTorch BatchNorm layer that splits input batch into N equal parts and passes each through | |
a separate BN layer. The first split is passed through the parent BN layers with weight/bias | |
keys the same as the original BN. All other splits pass through BN sub-layers under the '.aux_bn' | |
namespace. | |
This allows easily removing the auxiliary BN layers after training to efficiently | |
achieve the 'Auxiliary BatchNorm' as described in the AdvProp Paper, section 4.2, | |
'Disentangled Learning via An Auxiliary BN' | |
Hacked together by / Copyright 2020 Ross Wightman | |
""" | |
import torch | |
import torch.nn as nn | |
class SplitBatchNorm2d(torch.nn.BatchNorm2d): | |
def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=True, | |
track_running_stats=True, num_splits=2): | |
super().__init__(num_features, eps, momentum, affine, track_running_stats) | |
assert num_splits > 1, 'Should have at least one aux BN layer (num_splits at least 2)' | |
self.num_splits = num_splits | |
self.aux_bn = nn.ModuleList([ | |
nn.BatchNorm2d(num_features, eps, momentum, affine, track_running_stats) for _ in range(num_splits - 1)]) | |
def forward(self, input: torch.Tensor): | |
if self.training: # aux BN only relevant while training | |
split_size = input.shape[0] // self.num_splits | |
assert input.shape[0] == split_size * self.num_splits, "batch size must be evenly divisible by num_splits" | |
split_input = input.split(split_size) | |
x = [super().forward(split_input[0])] | |
for i, a in enumerate(self.aux_bn): | |
x.append(a(split_input[i + 1])) | |
return torch.cat(x, dim=0) | |
else: | |
return super().forward(input) | |
def convert_splitbn_model(module, num_splits=2): | |
""" | |
Recursively traverse module and its children to replace all instances of | |
``torch.nn.modules.batchnorm._BatchNorm`` with `SplitBatchnorm2d`. | |
Args: | |
module (torch.nn.Module): input module | |
num_splits: number of separate batchnorm layers to split input across | |
Example:: | |
>>> # model is an instance of torch.nn.Module | |
>>> model = timm.models.convert_splitbn_model(model, num_splits=2) | |
""" | |
mod = module | |
if isinstance(module, torch.nn.modules.instancenorm._InstanceNorm): | |
return module | |
if isinstance(module, torch.nn.modules.batchnorm._BatchNorm): | |
mod = SplitBatchNorm2d( | |
module.num_features, module.eps, module.momentum, module.affine, | |
module.track_running_stats, num_splits=num_splits) | |
mod.running_mean = module.running_mean | |
mod.running_var = module.running_var | |
mod.num_batches_tracked = module.num_batches_tracked | |
if module.affine: | |
mod.weight.data = module.weight.data.clone().detach() | |
mod.bias.data = module.bias.data.clone().detach() | |
for aux in mod.aux_bn: | |
aux.running_mean = module.running_mean.clone() | |
aux.running_var = module.running_var.clone() | |
aux.num_batches_tracked = module.num_batches_tracked.clone() | |
if module.affine: | |
aux.weight.data = module.weight.data.clone().detach() | |
aux.bias.data = module.bias.data.clone().detach() | |
for name, child in module.named_children(): | |
mod.add_module(name, convert_splitbn_model(child, num_splits=num_splits)) | |
del module | |
return mod | |