Spaces:
Sleeping
Sleeping
""" Conv2d + BN + Act | |
Hacked together by / Copyright 2020 Ross Wightman | |
""" | |
from torch import nn as nn | |
from .create_conv2d import create_conv2d | |
from .create_norm_act import convert_norm_act_type | |
class ConvBnAct(nn.Module): | |
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding='', dilation=1, groups=1, | |
norm_layer=nn.BatchNorm2d, norm_kwargs=None, act_layer=nn.ReLU, apply_act=True, | |
drop_block=None, aa_layer=None): | |
super(ConvBnAct, self).__init__() | |
use_aa = aa_layer is not None | |
self.conv = create_conv2d( | |
in_channels, out_channels, kernel_size, stride=1 if use_aa else stride, | |
padding=padding, dilation=dilation, groups=groups, bias=False) | |
# NOTE for backwards compatibility with models that use separate norm and act layer definitions | |
norm_act_layer, norm_act_args = convert_norm_act_type(norm_layer, act_layer, norm_kwargs) | |
self.bn = norm_act_layer(out_channels, apply_act=apply_act, drop_block=drop_block, **norm_act_args) | |
self.aa = aa_layer(channels=out_channels) if stride == 2 and use_aa else None | |
def in_channels(self): | |
return self.conv.in_channels | |
def out_channels(self): | |
return self.conv.out_channels | |
def forward(self, x): | |
x = self.conv(x) | |
x = self.bn(x) | |
if self.aa is not None: | |
x = self.aa(x) | |
return x | |