styledrop / timm /models /layers /blur_pool.py
zideliu's picture
StyleDrop init
28c6826
raw
history blame
2.18 kB
"""
BlurPool layer inspired by
- Kornia's Max_BlurPool2d
- Making Convolutional Networks Shift-Invariant Again :cite:`zhang2019shiftinvar`
FIXME merge this impl with those in `anti_aliasing.py`
Hacked together by Chris Ha and Ross Wightman
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from typing import Dict
from .padding import get_padding
class BlurPool2d(nn.Module):
r"""Creates a module that computes blurs and downsample a given feature map.
See :cite:`zhang2019shiftinvar` for more details.
Corresponds to the Downsample class, which does blurring and subsampling
Args:
channels = Number of input channels
filt_size (int): binomial filter size for blurring. currently supports 3 (default) and 5.
stride (int): downsampling filter stride
Returns:
torch.Tensor: the transformed tensor.
"""
filt: Dict[str, torch.Tensor]
def __init__(self, channels, filt_size=3, stride=2) -> None:
super(BlurPool2d, self).__init__()
assert filt_size > 1
self.channels = channels
self.filt_size = filt_size
self.stride = stride
pad_size = [get_padding(filt_size, stride, dilation=1)] * 4
self.padding = nn.ReflectionPad2d(pad_size)
self._coeffs = torch.tensor((np.poly1d((0.5, 0.5)) ** (self.filt_size - 1)).coeffs) # for torchscript compat
self.filt = {} # lazy init by device for DataParallel compat
def _create_filter(self, like: torch.Tensor):
blur_filter = (self._coeffs[:, None] * self._coeffs[None, :]).to(dtype=like.dtype, device=like.device)
return blur_filter[None, None, :, :].repeat(self.channels, 1, 1, 1)
def _apply(self, fn):
# override nn.Module _apply, reset filter cache if used
self.filt = {}
super(BlurPool2d, self)._apply(fn)
def forward(self, input_tensor: torch.Tensor) -> torch.Tensor:
C = input_tensor.shape[1]
blur_filt = self.filt.get(str(input_tensor.device), self._create_filter(input_tensor))
return F.conv2d(
self.padding(input_tensor), blur_filt, stride=self.stride, groups=C)