Spaces:
Sleeping
Sleeping
""" | |
BlurPool layer inspired by | |
- Kornia's Max_BlurPool2d | |
- Making Convolutional Networks Shift-Invariant Again :cite:`zhang2019shiftinvar` | |
FIXME merge this impl with those in `anti_aliasing.py` | |
Hacked together by Chris Ha and Ross Wightman | |
""" | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import numpy as np | |
from typing import Dict | |
from .padding import get_padding | |
class BlurPool2d(nn.Module): | |
r"""Creates a module that computes blurs and downsample a given feature map. | |
See :cite:`zhang2019shiftinvar` for more details. | |
Corresponds to the Downsample class, which does blurring and subsampling | |
Args: | |
channels = Number of input channels | |
filt_size (int): binomial filter size for blurring. currently supports 3 (default) and 5. | |
stride (int): downsampling filter stride | |
Returns: | |
torch.Tensor: the transformed tensor. | |
""" | |
filt: Dict[str, torch.Tensor] | |
def __init__(self, channels, filt_size=3, stride=2) -> None: | |
super(BlurPool2d, self).__init__() | |
assert filt_size > 1 | |
self.channels = channels | |
self.filt_size = filt_size | |
self.stride = stride | |
pad_size = [get_padding(filt_size, stride, dilation=1)] * 4 | |
self.padding = nn.ReflectionPad2d(pad_size) | |
self._coeffs = torch.tensor((np.poly1d((0.5, 0.5)) ** (self.filt_size - 1)).coeffs) # for torchscript compat | |
self.filt = {} # lazy init by device for DataParallel compat | |
def _create_filter(self, like: torch.Tensor): | |
blur_filter = (self._coeffs[:, None] * self._coeffs[None, :]).to(dtype=like.dtype, device=like.device) | |
return blur_filter[None, None, :, :].repeat(self.channels, 1, 1, 1) | |
def _apply(self, fn): | |
# override nn.Module _apply, reset filter cache if used | |
self.filt = {} | |
super(BlurPool2d, self)._apply(fn) | |
def forward(self, input_tensor: torch.Tensor) -> torch.Tensor: | |
C = input_tensor.shape[1] | |
blur_filt = self.filt.get(str(input_tensor.device), self._create_filter(input_tensor)) | |
return F.conv2d( | |
self.padding(input_tensor), blur_filt, stride=self.stride, groups=C) | |