Spaces:
Sleeping
Sleeping
"""PyTorch SelecSLS Net example for ImageNet Classification | |
License: CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/legalcode) | |
Author: Dushyant Mehta (@mehtadushy) | |
SelecSLS (core) Network Architecture as proposed in "XNect: Real-time Multi-person 3D | |
Human Pose Estimation with a Single RGB Camera, Mehta et al." | |
https://arxiv.org/abs/1907.00837 | |
Based on ResNet implementation in https://github.com/rwightman/pytorch-image-models | |
and SelecSLS Net implementation in https://github.com/mehtadushy/SelecSLS-Pytorch | |
""" | |
from typing import List | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | |
from .helpers import build_model_with_cfg | |
from .layers import create_classifier | |
from .registry import register_model | |
__all__ = ['SelecSLS'] # model_registry will add each entrypoint fn to this | |
def _cfg(url='', **kwargs): | |
return { | |
'url': url, | |
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (4, 4), | |
'crop_pct': 0.875, 'interpolation': 'bilinear', | |
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, | |
'first_conv': 'stem.0', 'classifier': 'fc', | |
**kwargs | |
} | |
default_cfgs = { | |
'selecsls42': _cfg( | |
url='', | |
interpolation='bicubic'), | |
'selecsls42b': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-selecsls/selecsls42b-8af30141.pth', | |
interpolation='bicubic'), | |
'selecsls60': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-selecsls/selecsls60-bbf87526.pth', | |
interpolation='bicubic'), | |
'selecsls60b': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-selecsls/selecsls60b-94e619b5.pth', | |
interpolation='bicubic'), | |
'selecsls84': _cfg( | |
url='', | |
interpolation='bicubic'), | |
} | |
class SequentialList(nn.Sequential): | |
def __init__(self, *args): | |
super(SequentialList, self).__init__(*args) | |
# noqa: F811 | |
def forward(self, x): | |
# type: (List[torch.Tensor]) -> (List[torch.Tensor]) | |
pass | |
# noqa: F811 | |
def forward(self, x): | |
# type: (torch.Tensor) -> (List[torch.Tensor]) | |
pass | |
def forward(self, x) -> List[torch.Tensor]: | |
for module in self: | |
x = module(x) | |
return x | |
class SelectSeq(nn.Module): | |
def __init__(self, mode='index', index=0): | |
super(SelectSeq, self).__init__() | |
self.mode = mode | |
self.index = index | |
# noqa: F811 | |
def forward(self, x): | |
# type: (List[torch.Tensor]) -> (torch.Tensor) | |
pass | |
# noqa: F811 | |
def forward(self, x): | |
# type: (Tuple[torch.Tensor]) -> (torch.Tensor) | |
pass | |
def forward(self, x) -> torch.Tensor: | |
if self.mode == 'index': | |
return x[self.index] | |
else: | |
return torch.cat(x, dim=1) | |
def conv_bn(in_chs, out_chs, k=3, stride=1, padding=None, dilation=1): | |
if padding is None: | |
padding = ((stride - 1) + dilation * (k - 1)) // 2 | |
return nn.Sequential( | |
nn.Conv2d(in_chs, out_chs, k, stride, padding=padding, dilation=dilation, bias=False), | |
nn.BatchNorm2d(out_chs), | |
nn.ReLU(inplace=True) | |
) | |
class SelecSLSBlock(nn.Module): | |
def __init__(self, in_chs, skip_chs, mid_chs, out_chs, is_first, stride, dilation=1): | |
super(SelecSLSBlock, self).__init__() | |
self.stride = stride | |
self.is_first = is_first | |
assert stride in [1, 2] | |
# Process input with 4 conv blocks with the same number of input and output channels | |
self.conv1 = conv_bn(in_chs, mid_chs, 3, stride, dilation=dilation) | |
self.conv2 = conv_bn(mid_chs, mid_chs, 1) | |
self.conv3 = conv_bn(mid_chs, mid_chs // 2, 3) | |
self.conv4 = conv_bn(mid_chs // 2, mid_chs, 1) | |
self.conv5 = conv_bn(mid_chs, mid_chs // 2, 3) | |
self.conv6 = conv_bn(2 * mid_chs + (0 if is_first else skip_chs), out_chs, 1) | |
def forward(self, x: List[torch.Tensor]) -> List[torch.Tensor]: | |
if not isinstance(x, list): | |
x = [x] | |
assert len(x) in [1, 2] | |
d1 = self.conv1(x[0]) | |
d2 = self.conv3(self.conv2(d1)) | |
d3 = self.conv5(self.conv4(d2)) | |
if self.is_first: | |
out = self.conv6(torch.cat([d1, d2, d3], 1)) | |
return [out, out] | |
else: | |
return [self.conv6(torch.cat([d1, d2, d3, x[1]], 1)), x[1]] | |
class SelecSLS(nn.Module): | |
"""SelecSLS42 / SelecSLS60 / SelecSLS84 | |
Parameters | |
---------- | |
cfg : network config dictionary specifying block type, feature, and head args | |
num_classes : int, default 1000 | |
Number of classification classes. | |
in_chans : int, default 3 | |
Number of input (color) channels. | |
drop_rate : float, default 0. | |
Dropout probability before classifier, for training | |
global_pool : str, default 'avg' | |
Global pooling type. One of 'avg', 'max', 'avgmax', 'catavgmax' | |
""" | |
def __init__(self, cfg, num_classes=1000, in_chans=3, drop_rate=0.0, global_pool='avg'): | |
self.num_classes = num_classes | |
self.drop_rate = drop_rate | |
super(SelecSLS, self).__init__() | |
self.stem = conv_bn(in_chans, 32, stride=2) | |
self.features = SequentialList(*[cfg['block'](*block_args) for block_args in cfg['features']]) | |
self.from_seq = SelectSeq() # from List[tensor] -> Tensor in module compatible way | |
self.head = nn.Sequential(*[conv_bn(*conv_args) for conv_args in cfg['head']]) | |
self.num_features = cfg['num_features'] | |
self.feature_info = cfg['feature_info'] | |
self.global_pool, self.fc = create_classifier(self.num_features, self.num_classes, pool_type=global_pool) | |
for n, m in self.named_modules(): | |
if isinstance(m, nn.Conv2d): | |
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') | |
elif isinstance(m, nn.BatchNorm2d): | |
nn.init.constant_(m.weight, 1.) | |
nn.init.constant_(m.bias, 0.) | |
def get_classifier(self): | |
return self.fc | |
def reset_classifier(self, num_classes, global_pool='avg'): | |
self.num_classes = num_classes | |
self.global_pool, self.fc = create_classifier(self.num_features, self.num_classes, pool_type=global_pool) | |
def forward_features(self, x): | |
x = self.stem(x) | |
x = self.features(x) | |
x = self.head(self.from_seq(x)) | |
return x | |
def forward(self, x): | |
x = self.forward_features(x) | |
x = self.global_pool(x) | |
if self.drop_rate > 0.: | |
x = F.dropout(x, p=self.drop_rate, training=self.training) | |
x = self.fc(x) | |
return x | |
def _create_selecsls(variant, pretrained, model_kwargs): | |
cfg = {} | |
feature_info = [dict(num_chs=32, reduction=2, module='stem.2')] | |
if variant.startswith('selecsls42'): | |
cfg['block'] = SelecSLSBlock | |
# Define configuration of the network after the initial neck | |
cfg['features'] = [ | |
# in_chs, skip_chs, mid_chs, out_chs, is_first, stride | |
(32, 0, 64, 64, True, 2), | |
(64, 64, 64, 128, False, 1), | |
(128, 0, 144, 144, True, 2), | |
(144, 144, 144, 288, False, 1), | |
(288, 0, 304, 304, True, 2), | |
(304, 304, 304, 480, False, 1), | |
] | |
feature_info.extend([ | |
dict(num_chs=128, reduction=4, module='features.1'), | |
dict(num_chs=288, reduction=8, module='features.3'), | |
dict(num_chs=480, reduction=16, module='features.5'), | |
]) | |
# Head can be replaced with alternative configurations depending on the problem | |
feature_info.append(dict(num_chs=1024, reduction=32, module='head.1')) | |
if variant == 'selecsls42b': | |
cfg['head'] = [ | |
(480, 960, 3, 2), | |
(960, 1024, 3, 1), | |
(1024, 1280, 3, 2), | |
(1280, 1024, 1, 1), | |
] | |
feature_info.append(dict(num_chs=1024, reduction=64, module='head.3')) | |
cfg['num_features'] = 1024 | |
else: | |
cfg['head'] = [ | |
(480, 960, 3, 2), | |
(960, 1024, 3, 1), | |
(1024, 1024, 3, 2), | |
(1024, 1280, 1, 1), | |
] | |
feature_info.append(dict(num_chs=1280, reduction=64, module='head.3')) | |
cfg['num_features'] = 1280 | |
elif variant.startswith('selecsls60'): | |
cfg['block'] = SelecSLSBlock | |
# Define configuration of the network after the initial neck | |
cfg['features'] = [ | |
# in_chs, skip_chs, mid_chs, out_chs, is_first, stride | |
(32, 0, 64, 64, True, 2), | |
(64, 64, 64, 128, False, 1), | |
(128, 0, 128, 128, True, 2), | |
(128, 128, 128, 128, False, 1), | |
(128, 128, 128, 288, False, 1), | |
(288, 0, 288, 288, True, 2), | |
(288, 288, 288, 288, False, 1), | |
(288, 288, 288, 288, False, 1), | |
(288, 288, 288, 416, False, 1), | |
] | |
feature_info.extend([ | |
dict(num_chs=128, reduction=4, module='features.1'), | |
dict(num_chs=288, reduction=8, module='features.4'), | |
dict(num_chs=416, reduction=16, module='features.8'), | |
]) | |
# Head can be replaced with alternative configurations depending on the problem | |
feature_info.append(dict(num_chs=1024, reduction=32, module='head.1')) | |
if variant == 'selecsls60b': | |
cfg['head'] = [ | |
(416, 756, 3, 2), | |
(756, 1024, 3, 1), | |
(1024, 1280, 3, 2), | |
(1280, 1024, 1, 1), | |
] | |
feature_info.append(dict(num_chs=1024, reduction=64, module='head.3')) | |
cfg['num_features'] = 1024 | |
else: | |
cfg['head'] = [ | |
(416, 756, 3, 2), | |
(756, 1024, 3, 1), | |
(1024, 1024, 3, 2), | |
(1024, 1280, 1, 1), | |
] | |
feature_info.append(dict(num_chs=1280, reduction=64, module='head.3')) | |
cfg['num_features'] = 1280 | |
elif variant == 'selecsls84': | |
cfg['block'] = SelecSLSBlock | |
# Define configuration of the network after the initial neck | |
cfg['features'] = [ | |
# in_chs, skip_chs, mid_chs, out_chs, is_first, stride | |
(32, 0, 64, 64, True, 2), | |
(64, 64, 64, 144, False, 1), | |
(144, 0, 144, 144, True, 2), | |
(144, 144, 144, 144, False, 1), | |
(144, 144, 144, 144, False, 1), | |
(144, 144, 144, 144, False, 1), | |
(144, 144, 144, 304, False, 1), | |
(304, 0, 304, 304, True, 2), | |
(304, 304, 304, 304, False, 1), | |
(304, 304, 304, 304, False, 1), | |
(304, 304, 304, 304, False, 1), | |
(304, 304, 304, 304, False, 1), | |
(304, 304, 304, 512, False, 1), | |
] | |
feature_info.extend([ | |
dict(num_chs=144, reduction=4, module='features.1'), | |
dict(num_chs=304, reduction=8, module='features.6'), | |
dict(num_chs=512, reduction=16, module='features.12'), | |
]) | |
# Head can be replaced with alternative configurations depending on the problem | |
cfg['head'] = [ | |
(512, 960, 3, 2), | |
(960, 1024, 3, 1), | |
(1024, 1024, 3, 2), | |
(1024, 1280, 3, 1), | |
] | |
cfg['num_features'] = 1280 | |
feature_info.extend([ | |
dict(num_chs=1024, reduction=32, module='head.1'), | |
dict(num_chs=1280, reduction=64, module='head.3') | |
]) | |
else: | |
raise ValueError('Invalid net configuration ' + variant + ' !!!') | |
cfg['feature_info'] = feature_info | |
# this model can do 6 feature levels by default, unlike most others, leave as 0-4 to avoid surprises? | |
return build_model_with_cfg( | |
SelecSLS, variant, pretrained, default_cfg=default_cfgs[variant], model_cfg=cfg, | |
feature_cfg=dict(out_indices=(0, 1, 2, 3, 4), flatten_sequential=True), **model_kwargs) | |
def selecsls42(pretrained=False, **kwargs): | |
"""Constructs a SelecSLS42 model. | |
""" | |
return _create_selecsls('selecsls42', pretrained, kwargs) | |
def selecsls42b(pretrained=False, **kwargs): | |
"""Constructs a SelecSLS42_B model. | |
""" | |
return _create_selecsls('selecsls42b', pretrained, kwargs) | |
def selecsls60(pretrained=False, **kwargs): | |
"""Constructs a SelecSLS60 model. | |
""" | |
return _create_selecsls('selecsls60', pretrained, kwargs) | |
def selecsls60b(pretrained=False, **kwargs): | |
"""Constructs a SelecSLS60_B model. | |
""" | |
return _create_selecsls('selecsls60b', pretrained, kwargs) | |
def selecsls84(pretrained=False, **kwargs): | |
"""Constructs a SelecSLS84 model. | |
""" | |
return _create_selecsls('selecsls84', pretrained, kwargs) | |