Spaces:
Sleeping
Sleeping
""" PyTorch Feature Extraction Helpers | |
A collection of classes, functions, modules to help extract features from models | |
and provide a common interface for describing them. | |
The return_layers, module re-writing idea inspired by torchvision IntermediateLayerGetter | |
https://github.com/pytorch/vision/blob/d88d8961ae51507d0cb680329d985b1488b1b76b/torchvision/models/_utils.py | |
Hacked together by / Copyright 2020 Ross Wightman | |
""" | |
from collections import OrderedDict, defaultdict | |
from copy import deepcopy | |
from functools import partial | |
from typing import Dict, List, Tuple | |
import torch | |
import torch.nn as nn | |
class FeatureInfo: | |
def __init__(self, feature_info: List[Dict], out_indices: Tuple[int]): | |
prev_reduction = 1 | |
for fi in feature_info: | |
# sanity check the mandatory fields, there may be additional fields depending on the model | |
assert 'num_chs' in fi and fi['num_chs'] > 0 | |
assert 'reduction' in fi and fi['reduction'] >= prev_reduction | |
prev_reduction = fi['reduction'] | |
assert 'module' in fi | |
self.out_indices = out_indices | |
self.info = feature_info | |
def from_other(self, out_indices: Tuple[int]): | |
return FeatureInfo(deepcopy(self.info), out_indices) | |
def get(self, key, idx=None): | |
""" Get value by key at specified index (indices) | |
if idx == None, returns value for key at each output index | |
if idx is an integer, return value for that feature module index (ignoring output indices) | |
if idx is a list/tupple, return value for each module index (ignoring output indices) | |
""" | |
if idx is None: | |
return [self.info[i][key] for i in self.out_indices] | |
if isinstance(idx, (tuple, list)): | |
return [self.info[i][key] for i in idx] | |
else: | |
return self.info[idx][key] | |
def get_dicts(self, keys=None, idx=None): | |
""" return info dicts for specified keys (or all if None) at specified indices (or out_indices if None) | |
""" | |
if idx is None: | |
if keys is None: | |
return [self.info[i] for i in self.out_indices] | |
else: | |
return [{k: self.info[i][k] for k in keys} for i in self.out_indices] | |
if isinstance(idx, (tuple, list)): | |
return [self.info[i] if keys is None else {k: self.info[i][k] for k in keys} for i in idx] | |
else: | |
return self.info[idx] if keys is None else {k: self.info[idx][k] for k in keys} | |
def channels(self, idx=None): | |
""" feature channels accessor | |
""" | |
return self.get('num_chs', idx) | |
def reduction(self, idx=None): | |
""" feature reduction (output stride) accessor | |
""" | |
return self.get('reduction', idx) | |
def module_name(self, idx=None): | |
""" feature module name accessor | |
""" | |
return self.get('module', idx) | |
def __getitem__(self, item): | |
return self.info[item] | |
def __len__(self): | |
return len(self.info) | |
class FeatureHooks: | |
""" Feature Hook Helper | |
This module helps with the setup and extraction of hooks for extracting features from | |
internal nodes in a model by node name. This works quite well in eager Python but needs | |
redesign for torcscript. | |
""" | |
def __init__(self, hooks, named_modules, out_map=None, default_hook_type='forward'): | |
# setup feature hooks | |
modules = {k: v for k, v in named_modules} | |
for i, h in enumerate(hooks): | |
hook_name = h['module'] | |
m = modules[hook_name] | |
hook_id = out_map[i] if out_map else hook_name | |
hook_fn = partial(self._collect_output_hook, hook_id) | |
hook_type = h['hook_type'] if 'hook_type' in h else default_hook_type | |
if hook_type == 'forward_pre': | |
m.register_forward_pre_hook(hook_fn) | |
elif hook_type == 'forward': | |
m.register_forward_hook(hook_fn) | |
else: | |
assert False, "Unsupported hook type" | |
self._feature_outputs = defaultdict(OrderedDict) | |
def _collect_output_hook(self, hook_id, *args): | |
x = args[-1] # tensor we want is last argument, output for fwd, input for fwd_pre | |
if isinstance(x, tuple): | |
x = x[0] # unwrap input tuple | |
self._feature_outputs[x.device][hook_id] = x | |
def get_output(self, device) -> Dict[str, torch.tensor]: | |
output = self._feature_outputs[device] | |
self._feature_outputs[device] = OrderedDict() # clear after reading | |
return output | |
def _module_list(module, flatten_sequential=False): | |
# a yield/iter would be better for this but wouldn't be compatible with torchscript | |
ml = [] | |
for name, module in module.named_children(): | |
if flatten_sequential and isinstance(module, nn.Sequential): | |
# first level of Sequential containers is flattened into containing model | |
for child_name, child_module in module.named_children(): | |
combined = [name, child_name] | |
ml.append(('_'.join(combined), '.'.join(combined), child_module)) | |
else: | |
ml.append((name, name, module)) | |
return ml | |
def _get_feature_info(net, out_indices): | |
feature_info = getattr(net, 'feature_info') | |
if isinstance(feature_info, FeatureInfo): | |
return feature_info.from_other(out_indices) | |
elif isinstance(feature_info, (list, tuple)): | |
return FeatureInfo(net.feature_info, out_indices) | |
else: | |
assert False, "Provided feature_info is not valid" | |
def _get_return_layers(feature_info, out_map): | |
module_names = feature_info.module_name() | |
return_layers = {} | |
for i, name in enumerate(module_names): | |
return_layers[name] = out_map[i] if out_map is not None else feature_info.out_indices[i] | |
return return_layers | |
class FeatureDictNet(nn.ModuleDict): | |
""" Feature extractor with OrderedDict return | |
Wrap a model and extract features as specified by the out indices, the network is | |
partially re-built from contained modules. | |
There is a strong assumption that the modules have been registered into the model in the same | |
order as they are used. There should be no reuse of the same nn.Module more than once, including | |
trivial modules like `self.relu = nn.ReLU`. | |
Only submodules that are directly assigned to the model class (`model.feature1`) or at most | |
one Sequential container deep (`model.features.1`, with flatten_sequent=True) can be captured. | |
All Sequential containers that are directly assigned to the original model will have their | |
modules assigned to this module with the name `model.features.1` being changed to `model.features_1` | |
Arguments: | |
model (nn.Module): model from which we will extract the features | |
out_indices (tuple[int]): model output indices to extract features for | |
out_map (sequence): list or tuple specifying desired return id for each out index, | |
otherwise str(index) is used | |
feature_concat (bool): whether to concatenate intermediate features that are lists or tuples | |
vs select element [0] | |
flatten_sequential (bool): whether to flatten sequential modules assigned to model | |
""" | |
def __init__( | |
self, model, | |
out_indices=(0, 1, 2, 3, 4), out_map=None, feature_concat=False, flatten_sequential=False): | |
super(FeatureDictNet, self).__init__() | |
self.feature_info = _get_feature_info(model, out_indices) | |
self.concat = feature_concat | |
self.return_layers = {} | |
return_layers = _get_return_layers(self.feature_info, out_map) | |
modules = _module_list(model, flatten_sequential=flatten_sequential) | |
remaining = set(return_layers.keys()) | |
layers = OrderedDict() | |
for new_name, old_name, module in modules: | |
layers[new_name] = module | |
if old_name in remaining: | |
# return id has to be consistently str type for torchscript | |
self.return_layers[new_name] = str(return_layers[old_name]) | |
remaining.remove(old_name) | |
if not remaining: | |
break | |
assert not remaining and len(self.return_layers) == len(return_layers), \ | |
f'Return layers ({remaining}) are not present in model' | |
self.update(layers) | |
def _collect(self, x) -> (Dict[str, torch.Tensor]): | |
out = OrderedDict() | |
for name, module in self.items(): | |
x = module(x) | |
if name in self.return_layers: | |
out_id = self.return_layers[name] | |
if isinstance(x, (tuple, list)): | |
# If model tap is a tuple or list, concat or select first element | |
# FIXME this may need to be more generic / flexible for some nets | |
out[out_id] = torch.cat(x, 1) if self.concat else x[0] | |
else: | |
out[out_id] = x | |
return out | |
def forward(self, x) -> Dict[str, torch.Tensor]: | |
return self._collect(x) | |
class FeatureListNet(FeatureDictNet): | |
""" Feature extractor with list return | |
See docstring for FeatureDictNet above, this class exists only to appease Torchscript typing constraints. | |
In eager Python we could have returned List[Tensor] vs Dict[id, Tensor] based on a member bool. | |
""" | |
def __init__( | |
self, model, | |
out_indices=(0, 1, 2, 3, 4), out_map=None, feature_concat=False, flatten_sequential=False): | |
super(FeatureListNet, self).__init__( | |
model, out_indices=out_indices, out_map=out_map, feature_concat=feature_concat, | |
flatten_sequential=flatten_sequential) | |
def forward(self, x) -> (List[torch.Tensor]): | |
return list(self._collect(x).values()) | |
class FeatureHookNet(nn.ModuleDict): | |
""" FeatureHookNet | |
Wrap a model and extract features specified by the out indices using forward/forward-pre hooks. | |
If `no_rewrite` is True, features are extracted via hooks without modifying the underlying | |
network in any way. | |
If `no_rewrite` is False, the model will be re-written as in the | |
FeatureList/FeatureDict case by folding first to second (Sequential only) level modules into this one. | |
FIXME this does not currently work with Torchscript, see FeatureHooks class | |
""" | |
def __init__( | |
self, model, | |
out_indices=(0, 1, 2, 3, 4), out_map=None, out_as_dict=False, no_rewrite=False, | |
feature_concat=False, flatten_sequential=False, default_hook_type='forward'): | |
super(FeatureHookNet, self).__init__() | |
assert not torch.jit.is_scripting() | |
self.feature_info = _get_feature_info(model, out_indices) | |
self.out_as_dict = out_as_dict | |
layers = OrderedDict() | |
hooks = [] | |
if no_rewrite: | |
assert not flatten_sequential | |
if hasattr(model, 'reset_classifier'): # make sure classifier is removed? | |
model.reset_classifier(0) | |
layers['body'] = model | |
hooks.extend(self.feature_info.get_dicts()) | |
else: | |
modules = _module_list(model, flatten_sequential=flatten_sequential) | |
remaining = {f['module']: f['hook_type'] if 'hook_type' in f else default_hook_type | |
for f in self.feature_info.get_dicts()} | |
for new_name, old_name, module in modules: | |
layers[new_name] = module | |
for fn, fm in module.named_modules(prefix=old_name): | |
if fn in remaining: | |
hooks.append(dict(module=fn, hook_type=remaining[fn])) | |
del remaining[fn] | |
if not remaining: | |
break | |
assert not remaining, f'Return layers ({remaining}) are not present in model' | |
self.update(layers) | |
self.hooks = FeatureHooks(hooks, model.named_modules(), out_map=out_map) | |
def forward(self, x): | |
for name, module in self.items(): | |
x = module(x) | |
out = self.hooks.get_output(x.device) | |
return out if self.out_as_dict else list(out.values()) | |