Spaces:
Sleeping
Sleeping
""" EfficientNet, MobileNetV3, etc Blocks | |
Hacked together by / Copyright 2020 Ross Wightman | |
""" | |
import torch | |
import torch.nn as nn | |
from torch.nn import functional as F | |
from .layers import create_conv2d, drop_path, get_act_layer | |
from .layers.activations import sigmoid | |
# Defaults used for Google/Tensorflow training of mobile networks /w RMSprop as per | |
# papers and TF reference implementations. PT momentum equiv for TF decay is (1 - TF decay) | |
# NOTE: momentum varies btw .99 and .9997 depending on source | |
# .99 in official TF TPU impl | |
# .9997 (/w .999 in search space) for paper | |
BN_MOMENTUM_TF_DEFAULT = 1 - 0.99 | |
BN_EPS_TF_DEFAULT = 1e-3 | |
_BN_ARGS_TF = dict(momentum=BN_MOMENTUM_TF_DEFAULT, eps=BN_EPS_TF_DEFAULT) | |
def get_bn_args_tf(): | |
return _BN_ARGS_TF.copy() | |
def resolve_bn_args(kwargs): | |
bn_args = get_bn_args_tf() if kwargs.pop('bn_tf', False) else {} | |
bn_momentum = kwargs.pop('bn_momentum', None) | |
if bn_momentum is not None: | |
bn_args['momentum'] = bn_momentum | |
bn_eps = kwargs.pop('bn_eps', None) | |
if bn_eps is not None: | |
bn_args['eps'] = bn_eps | |
return bn_args | |
_SE_ARGS_DEFAULT = dict( | |
gate_fn=sigmoid, | |
act_layer=None, | |
reduce_mid=False, | |
divisor=1) | |
def resolve_se_args(kwargs, in_chs, act_layer=None): | |
se_kwargs = kwargs.copy() if kwargs is not None else {} | |
# fill in args that aren't specified with the defaults | |
for k, v in _SE_ARGS_DEFAULT.items(): | |
se_kwargs.setdefault(k, v) | |
# some models, like MobilNetV3, calculate SE reduction chs from the containing block's mid_ch instead of in_ch | |
if not se_kwargs.pop('reduce_mid'): | |
se_kwargs['reduced_base_chs'] = in_chs | |
# act_layer override, if it remains None, the containing block's act_layer will be used | |
if se_kwargs['act_layer'] is None: | |
assert act_layer is not None | |
se_kwargs['act_layer'] = act_layer | |
return se_kwargs | |
def resolve_act_layer(kwargs, default='relu'): | |
act_layer = kwargs.pop('act_layer', default) | |
if isinstance(act_layer, str): | |
act_layer = get_act_layer(act_layer) | |
return act_layer | |
def make_divisible(v, divisor=8, min_value=None): | |
min_value = min_value or divisor | |
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) | |
# Make sure that round down does not go down by more than 10%. | |
if new_v < 0.9 * v: | |
new_v += divisor | |
return new_v | |
def round_channels(channels, multiplier=1.0, divisor=8, channel_min=None): | |
"""Round number of filters based on depth multiplier.""" | |
if not multiplier: | |
return channels | |
channels *= multiplier | |
return make_divisible(channels, divisor, channel_min) | |
class ChannelShuffle(nn.Module): | |
# FIXME haven't used yet | |
def __init__(self, groups): | |
super(ChannelShuffle, self).__init__() | |
self.groups = groups | |
def forward(self, x): | |
"""Channel shuffle: [N,C,H,W] -> [N,g,C/g,H,W] -> [N,C/g,g,H,w] -> [N,C,H,W]""" | |
N, C, H, W = x.size() | |
g = self.groups | |
assert C % g == 0, "Incompatible group size {} for input channel {}".format( | |
g, C | |
) | |
return ( | |
x.view(N, g, int(C / g), H, W) | |
.permute(0, 2, 1, 3, 4) | |
.contiguous() | |
.view(N, C, H, W) | |
) | |
class SqueezeExcite(nn.Module): | |
def __init__(self, in_chs, se_ratio=0.25, reduced_base_chs=None, | |
act_layer=nn.ReLU, gate_fn=sigmoid, divisor=1, **_): | |
super(SqueezeExcite, self).__init__() | |
reduced_chs = make_divisible((reduced_base_chs or in_chs) * se_ratio, divisor) | |
self.conv_reduce = nn.Conv2d(in_chs, reduced_chs, 1, bias=True) | |
self.act1 = act_layer(inplace=True) | |
self.conv_expand = nn.Conv2d(reduced_chs, in_chs, 1, bias=True) | |
self.gate_fn = gate_fn | |
def forward(self, x): | |
x_se = x.mean((2, 3), keepdim=True) | |
x_se = self.conv_reduce(x_se) | |
x_se = self.act1(x_se) | |
x_se = self.conv_expand(x_se) | |
return x * self.gate_fn(x_se) | |
class ConvBnAct(nn.Module): | |
def __init__(self, in_chs, out_chs, kernel_size, | |
stride=1, dilation=1, pad_type='', act_layer=nn.ReLU, | |
norm_layer=nn.BatchNorm2d, norm_kwargs=None): | |
super(ConvBnAct, self).__init__() | |
norm_kwargs = norm_kwargs or {} | |
self.conv = create_conv2d(in_chs, out_chs, kernel_size, stride=stride, dilation=dilation, padding=pad_type) | |
self.bn1 = norm_layer(out_chs, **norm_kwargs) | |
self.act1 = act_layer(inplace=True) | |
def feature_info(self, location): | |
if location == 'expansion': # output of conv after act, same as block coutput | |
info = dict(module='act1', hook_type='forward', num_chs=self.conv.out_channels) | |
else: # location == 'bottleneck', block output | |
info = dict(module='', hook_type='', num_chs=self.conv.out_channels) | |
return info | |
def forward(self, x): | |
x = self.conv(x) | |
x = self.bn1(x) | |
x = self.act1(x) | |
return x | |
class DepthwiseSeparableConv(nn.Module): | |
""" DepthwiseSeparable block | |
Used for DS convs in MobileNet-V1 and in the place of IR blocks that have no expansion | |
(factor of 1.0). This is an alternative to having a IR with an optional first pw conv. | |
""" | |
def __init__(self, in_chs, out_chs, dw_kernel_size=3, | |
stride=1, dilation=1, pad_type='', act_layer=nn.ReLU, noskip=False, | |
pw_kernel_size=1, pw_act=False, se_ratio=0., se_kwargs=None, | |
norm_layer=nn.BatchNorm2d, norm_kwargs=None, drop_path_rate=0.): | |
super(DepthwiseSeparableConv, self).__init__() | |
norm_kwargs = norm_kwargs or {} | |
has_se = se_ratio is not None and se_ratio > 0. | |
self.has_residual = (stride == 1 and in_chs == out_chs) and not noskip | |
self.has_pw_act = pw_act # activation after point-wise conv | |
self.drop_path_rate = drop_path_rate | |
self.conv_dw = create_conv2d( | |
in_chs, in_chs, dw_kernel_size, stride=stride, dilation=dilation, padding=pad_type, depthwise=True) | |
self.bn1 = norm_layer(in_chs, **norm_kwargs) | |
self.act1 = act_layer(inplace=True) | |
# Squeeze-and-excitation | |
if has_se: | |
se_kwargs = resolve_se_args(se_kwargs, in_chs, act_layer) | |
self.se = SqueezeExcite(in_chs, se_ratio=se_ratio, **se_kwargs) | |
else: | |
self.se = None | |
self.conv_pw = create_conv2d(in_chs, out_chs, pw_kernel_size, padding=pad_type) | |
self.bn2 = norm_layer(out_chs, **norm_kwargs) | |
self.act2 = act_layer(inplace=True) if self.has_pw_act else nn.Identity() | |
def feature_info(self, location): | |
if location == 'expansion': # after SE, input to PW | |
info = dict(module='conv_pw', hook_type='forward_pre', num_chs=self.conv_pw.in_channels) | |
else: # location == 'bottleneck', block output | |
info = dict(module='', hook_type='', num_chs=self.conv_pw.out_channels) | |
return info | |
def forward(self, x): | |
residual = x | |
x = self.conv_dw(x) | |
x = self.bn1(x) | |
x = self.act1(x) | |
if self.se is not None: | |
x = self.se(x) | |
x = self.conv_pw(x) | |
x = self.bn2(x) | |
x = self.act2(x) | |
if self.has_residual: | |
if self.drop_path_rate > 0.: | |
x = drop_path(x, self.drop_path_rate, self.training) | |
x += residual | |
return x | |
class InvertedResidual(nn.Module): | |
""" Inverted residual block w/ optional SE and CondConv routing""" | |
def __init__(self, in_chs, out_chs, dw_kernel_size=3, | |
stride=1, dilation=1, pad_type='', act_layer=nn.ReLU, noskip=False, | |
exp_ratio=1.0, exp_kernel_size=1, pw_kernel_size=1, | |
se_ratio=0., se_kwargs=None, norm_layer=nn.BatchNorm2d, norm_kwargs=None, | |
conv_kwargs=None, drop_path_rate=0.): | |
super(InvertedResidual, self).__init__() | |
norm_kwargs = norm_kwargs or {} | |
conv_kwargs = conv_kwargs or {} | |
mid_chs = make_divisible(in_chs * exp_ratio) | |
has_se = se_ratio is not None and se_ratio > 0. | |
self.has_residual = (in_chs == out_chs and stride == 1) and not noskip | |
self.drop_path_rate = drop_path_rate | |
# Point-wise expansion | |
self.conv_pw = create_conv2d(in_chs, mid_chs, exp_kernel_size, padding=pad_type, **conv_kwargs) | |
self.bn1 = norm_layer(mid_chs, **norm_kwargs) | |
self.act1 = act_layer(inplace=True) | |
# Depth-wise convolution | |
self.conv_dw = create_conv2d( | |
mid_chs, mid_chs, dw_kernel_size, stride=stride, dilation=dilation, | |
padding=pad_type, depthwise=True, **conv_kwargs) | |
self.bn2 = norm_layer(mid_chs, **norm_kwargs) | |
self.act2 = act_layer(inplace=True) | |
# Squeeze-and-excitation | |
if has_se: | |
se_kwargs = resolve_se_args(se_kwargs, in_chs, act_layer) | |
self.se = SqueezeExcite(mid_chs, se_ratio=se_ratio, **se_kwargs) | |
else: | |
self.se = None | |
# Point-wise linear projection | |
self.conv_pwl = create_conv2d(mid_chs, out_chs, pw_kernel_size, padding=pad_type, **conv_kwargs) | |
self.bn3 = norm_layer(out_chs, **norm_kwargs) | |
def feature_info(self, location): | |
if location == 'expansion': # after SE, input to PWL | |
info = dict(module='conv_pwl', hook_type='forward_pre', num_chs=self.conv_pwl.in_channels) | |
else: # location == 'bottleneck', block output | |
info = dict(module='', hook_type='', num_chs=self.conv_pwl.out_channels) | |
return info | |
def forward(self, x): | |
residual = x | |
# Point-wise expansion | |
x = self.conv_pw(x) | |
x = self.bn1(x) | |
x = self.act1(x) | |
# Depth-wise convolution | |
x = self.conv_dw(x) | |
x = self.bn2(x) | |
x = self.act2(x) | |
# Squeeze-and-excitation | |
if self.se is not None: | |
x = self.se(x) | |
# Point-wise linear projection | |
x = self.conv_pwl(x) | |
x = self.bn3(x) | |
if self.has_residual: | |
if self.drop_path_rate > 0.: | |
x = drop_path(x, self.drop_path_rate, self.training) | |
x += residual | |
return x | |
class CondConvResidual(InvertedResidual): | |
""" Inverted residual block w/ CondConv routing""" | |
def __init__(self, in_chs, out_chs, dw_kernel_size=3, | |
stride=1, dilation=1, pad_type='', act_layer=nn.ReLU, noskip=False, | |
exp_ratio=1.0, exp_kernel_size=1, pw_kernel_size=1, | |
se_ratio=0., se_kwargs=None, norm_layer=nn.BatchNorm2d, norm_kwargs=None, | |
num_experts=0, drop_path_rate=0.): | |
self.num_experts = num_experts | |
conv_kwargs = dict(num_experts=self.num_experts) | |
super(CondConvResidual, self).__init__( | |
in_chs, out_chs, dw_kernel_size=dw_kernel_size, stride=stride, dilation=dilation, pad_type=pad_type, | |
act_layer=act_layer, noskip=noskip, exp_ratio=exp_ratio, exp_kernel_size=exp_kernel_size, | |
pw_kernel_size=pw_kernel_size, se_ratio=se_ratio, se_kwargs=se_kwargs, | |
norm_layer=norm_layer, norm_kwargs=norm_kwargs, conv_kwargs=conv_kwargs, | |
drop_path_rate=drop_path_rate) | |
self.routing_fn = nn.Linear(in_chs, self.num_experts) | |
def forward(self, x): | |
residual = x | |
# CondConv routing | |
pooled_inputs = F.adaptive_avg_pool2d(x, 1).flatten(1) | |
routing_weights = torch.sigmoid(self.routing_fn(pooled_inputs)) | |
# Point-wise expansion | |
x = self.conv_pw(x, routing_weights) | |
x = self.bn1(x) | |
x = self.act1(x) | |
# Depth-wise convolution | |
x = self.conv_dw(x, routing_weights) | |
x = self.bn2(x) | |
x = self.act2(x) | |
# Squeeze-and-excitation | |
if self.se is not None: | |
x = self.se(x) | |
# Point-wise linear projection | |
x = self.conv_pwl(x, routing_weights) | |
x = self.bn3(x) | |
if self.has_residual: | |
if self.drop_path_rate > 0.: | |
x = drop_path(x, self.drop_path_rate, self.training) | |
x += residual | |
return x | |
class EdgeResidual(nn.Module): | |
""" Residual block with expansion convolution followed by pointwise-linear w/ stride""" | |
def __init__(self, in_chs, out_chs, exp_kernel_size=3, exp_ratio=1.0, fake_in_chs=0, | |
stride=1, dilation=1, pad_type='', act_layer=nn.ReLU, noskip=False, pw_kernel_size=1, | |
se_ratio=0., se_kwargs=None, norm_layer=nn.BatchNorm2d, norm_kwargs=None, | |
drop_path_rate=0.): | |
super(EdgeResidual, self).__init__() | |
norm_kwargs = norm_kwargs or {} | |
if fake_in_chs > 0: | |
mid_chs = make_divisible(fake_in_chs * exp_ratio) | |
else: | |
mid_chs = make_divisible(in_chs * exp_ratio) | |
has_se = se_ratio is not None and se_ratio > 0. | |
self.has_residual = (in_chs == out_chs and stride == 1) and not noskip | |
self.drop_path_rate = drop_path_rate | |
# Expansion convolution | |
self.conv_exp = create_conv2d(in_chs, mid_chs, exp_kernel_size, padding=pad_type) | |
self.bn1 = norm_layer(mid_chs, **norm_kwargs) | |
self.act1 = act_layer(inplace=True) | |
# Squeeze-and-excitation | |
if has_se: | |
se_kwargs = resolve_se_args(se_kwargs, in_chs, act_layer) | |
self.se = SqueezeExcite(mid_chs, se_ratio=se_ratio, **se_kwargs) | |
else: | |
self.se = None | |
# Point-wise linear projection | |
self.conv_pwl = create_conv2d( | |
mid_chs, out_chs, pw_kernel_size, stride=stride, dilation=dilation, padding=pad_type) | |
self.bn2 = norm_layer(out_chs, **norm_kwargs) | |
def feature_info(self, location): | |
if location == 'expansion': # after SE, before PWL | |
info = dict(module='conv_pwl', hook_type='forward_pre', num_chs=self.conv_pwl.in_channels) | |
else: # location == 'bottleneck', block output | |
info = dict(module='', hook_type='', num_chs=self.conv_pwl.out_channels) | |
return info | |
def forward(self, x): | |
residual = x | |
# Expansion convolution | |
x = self.conv_exp(x) | |
x = self.bn1(x) | |
x = self.act1(x) | |
# Squeeze-and-excitation | |
if self.se is not None: | |
x = self.se(x) | |
# Point-wise linear projection | |
x = self.conv_pwl(x) | |
x = self.bn2(x) | |
if self.has_residual: | |
if self.drop_path_rate > 0.: | |
x = drop_path(x, self.drop_path_rate, self.training) | |
x += residual | |
return x | |