Spaces:
Sleeping
Sleeping
""" RMSProp modified to behave like Tensorflow impl | |
Originally cut & paste from PyTorch RMSProp | |
https://github.com/pytorch/pytorch/blob/063946d2b3f3f1e953a2a3b54e0b34f1393de295/torch/optim/rmsprop.py | |
Licensed under BSD-Clause 3 (ish), https://github.com/pytorch/pytorch/blob/master/LICENSE | |
Modifications Copyright 2020 Ross Wightman | |
""" | |
import torch | |
from torch.optim import Optimizer | |
class RMSpropTF(Optimizer): | |
"""Implements RMSprop algorithm (TensorFlow style epsilon) | |
NOTE: This is a direct cut-and-paste of PyTorch RMSprop with eps applied before sqrt | |
and a few other modifications to closer match Tensorflow for matching hyper-params. | |
Noteworthy changes include: | |
1. Epsilon applied inside square-root | |
2. square_avg initialized to ones | |
3. LR scaling of update accumulated in momentum buffer | |
Proposed by G. Hinton in his | |
`course <http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf>`_. | |
The centered version first appears in `Generating Sequences | |
With Recurrent Neural Networks <https://arxiv.org/pdf/1308.0850v5.pdf>`_. | |
Arguments: | |
params (iterable): iterable of parameters to optimize or dicts defining | |
parameter groups | |
lr (float, optional): learning rate (default: 1e-2) | |
momentum (float, optional): momentum factor (default: 0) | |
alpha (float, optional): smoothing (decay) constant (default: 0.9) | |
eps (float, optional): term added to the denominator to improve | |
numerical stability (default: 1e-10) | |
centered (bool, optional) : if ``True``, compute the centered RMSProp, | |
the gradient is normalized by an estimation of its variance | |
weight_decay (float, optional): weight decay (L2 penalty) (default: 0) | |
decoupled_decay (bool, optional): decoupled weight decay as per https://arxiv.org/abs/1711.05101 | |
lr_in_momentum (bool, optional): learning rate scaling is included in the momentum buffer | |
update as per defaults in Tensorflow | |
""" | |
def __init__(self, params, lr=1e-2, alpha=0.9, eps=1e-10, weight_decay=0, momentum=0., centered=False, | |
decoupled_decay=False, lr_in_momentum=True): | |
if not 0.0 <= lr: | |
raise ValueError("Invalid learning rate: {}".format(lr)) | |
if not 0.0 <= eps: | |
raise ValueError("Invalid epsilon value: {}".format(eps)) | |
if not 0.0 <= momentum: | |
raise ValueError("Invalid momentum value: {}".format(momentum)) | |
if not 0.0 <= weight_decay: | |
raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) | |
if not 0.0 <= alpha: | |
raise ValueError("Invalid alpha value: {}".format(alpha)) | |
defaults = dict(lr=lr, momentum=momentum, alpha=alpha, eps=eps, centered=centered, weight_decay=weight_decay, | |
decoupled_decay=decoupled_decay, lr_in_momentum=lr_in_momentum) | |
super(RMSpropTF, self).__init__(params, defaults) | |
def __setstate__(self, state): | |
super(RMSpropTF, self).__setstate__(state) | |
for group in self.param_groups: | |
group.setdefault('momentum', 0) | |
group.setdefault('centered', False) | |
def step(self, closure=None): | |
"""Performs a single optimization step. | |
Arguments: | |
closure (callable, optional): A closure that reevaluates the model | |
and returns the loss. | |
""" | |
loss = None | |
if closure is not None: | |
loss = closure() | |
for group in self.param_groups: | |
for p in group['params']: | |
if p.grad is None: | |
continue | |
grad = p.grad.data | |
if grad.is_sparse: | |
raise RuntimeError('RMSprop does not support sparse gradients') | |
state = self.state[p] | |
# State initialization | |
if len(state) == 0: | |
state['step'] = 0 | |
state['square_avg'] = torch.ones_like(p.data) # PyTorch inits to zero | |
if group['momentum'] > 0: | |
state['momentum_buffer'] = torch.zeros_like(p.data) | |
if group['centered']: | |
state['grad_avg'] = torch.zeros_like(p.data) | |
square_avg = state['square_avg'] | |
one_minus_alpha = 1. - group['alpha'] | |
state['step'] += 1 | |
if group['weight_decay'] != 0: | |
if 'decoupled_decay' in group and group['decoupled_decay']: | |
p.data.add_(-group['weight_decay'], p.data) | |
else: | |
grad = grad.add(group['weight_decay'], p.data) | |
# Tensorflow order of ops for updating squared avg | |
square_avg.add_(one_minus_alpha, grad.pow(2) - square_avg) | |
# square_avg.mul_(alpha).addcmul_(1 - alpha, grad, grad) # PyTorch original | |
if group['centered']: | |
grad_avg = state['grad_avg'] | |
grad_avg.add_(one_minus_alpha, grad - grad_avg) | |
# grad_avg.mul_(alpha).add_(1 - alpha, grad) # PyTorch original | |
avg = square_avg.addcmul(-1, grad_avg, grad_avg).add(group['eps']).sqrt_() # eps moved in sqrt | |
else: | |
avg = square_avg.add(group['eps']).sqrt_() # eps moved in sqrt | |
if group['momentum'] > 0: | |
buf = state['momentum_buffer'] | |
# Tensorflow accumulates the LR scaling in the momentum buffer | |
if 'lr_in_momentum' in group and group['lr_in_momentum']: | |
buf.mul_(group['momentum']).addcdiv_(group['lr'], grad, avg) | |
p.data.add_(-buf) | |
else: | |
# PyTorch scales the param update by LR | |
buf.mul_(group['momentum']).addcdiv_(grad, avg) | |
p.data.add_(-group['lr'], buf) | |
else: | |
p.data.addcdiv_(-group['lr'], grad, avg) | |
return loss | |