pipeline_server / tools /compare_and_draw.py
zy984764389's picture
Upload folder using huggingface_hub
4ba6fde verified
import json
import numpy as np
import pandas as pd
import glob
import cv2
import statistics
import os
import matplotlib.pyplot as plt
import seaborn as sn
import pandas as pd
from sklearn.metrics import confusion_matrix, classification_report
ss = ["American Widgeon_Female","American Widgeon_Male","Canada Goose","Canvasback_Male","Coot","Gadwall","Green-winged teal","Mallard Female",
"Mallard Male","Not a bird","Pelican","Pintail_Female","Pintail_Male","Ring-necked duck Female","Ring-necked duck Male","Scaup_Male","Shoveler_Female",
"Shoveler_Male","Snow","Unknown","White-fronted Goose"]
def IoU(true_box, pred_box):
[xmin1, ymin1, xmax1, ymax1] = [true_box[0],true_box[1],true_box[2],true_box[3]]
[xmin2, ymin2, xmax2, ymax2] = [pred_box[0],pred_box[1],pred_box[2],pred_box[3]]
area1 = (xmax1 - xmin1) * (ymax1 - ymin1)
area2 = (xmax2 - xmin2) * (ymax2 - ymin2)
xmin_inter = max(xmin1, xmin2)
xmax_inter = min(xmax1, xmax2)
ymin_inter = max(ymin1, ymin2)
ymax_inter = min(ymax1, ymax2)
if xmin_inter > xmax_inter or ymin_inter > ymax_inter:
return 0
area_inter = (xmax_inter - xmin_inter) * (ymax_inter - ymin_inter)
return float(area_inter) / (area1 + area2 - area_inter)
def draw_image(image_dir,output_dir,tp_list,fp_list,fn_list,tp_cate_list,cate = True):
raw_image = cv2.imread(image_dir)
for box in fn_list:
cv2.ellipse(raw_image, [int((box[0]+box[2])/2),int((box[1]+box[3])/2)], (int(box[2]-box[0]),int(box[3]-box[1])),0, 0, 360, (0,0,255), 3)
for box in fp_list:
cv2.polylines(raw_image, np.array([[(int((box[0]+box[2])/2), box[1]), (box[0], box[3]), (box[2], box[3])]]), True, (0,0,255), 3)
for box in tp_list:
cv2.rectangle(raw_image, (box[0],box[1]), (box[2],box[3]), (0,255,0), 3)
cv2.putText(raw_image, str(box[-1])+'_'+str(box[-2]), (int(box[0]), int(box[1])), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1)
if cate:
for box in tp_cate_list:
cv2.rectangle(raw_image, (box[0],box[1]), (box[2],box[3]), (255,0,0), 5)
cv2.putText(raw_image, str(box[-1]), (int(box[0]), int(box[1])), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 1)
save_dir = os.path.join(output_dir,os.path.split(image_dir)[-1])
cv2.imwrite(save_dir,raw_image)
def simple_str(s):
if 'Snow' in s:
return 'Snow'
elif s not in ss:
return 'Unknown'
else:
return s
def calculate_precis_recall(true_bbox,pred_bbox,iou):
fn = 0
fp = 0
tp = 0
tp_cate = 0
tp_list = []
fp_list = []
fn_list = []
tp_cate_list = []
total_pred = len(pred_bbox)
nneg = lambda x :max(0,x)
if (len(true_bbox)*len(pred_bbox)==0):
fn = len(true_bbox)
fp = len(pred_bbox)
tp = 0
else:
for t_bbox in true_bbox:
iou_val = []
for p_bbox in pred_bbox:
iou_val.append(IoU(t_bbox,p_bbox))
if sum(np.array(iou_val)>iou)==0:
fn += 1
fn_list.append(t_bbox)
else :
tp+=1
taken = iou_val.index(max(iou_val))
tmp_pred = []
tmp_pred.extend(pred_bbox[taken])
tmp_pred.append(t_bbox[-1])
tp_list.append(tmp_pred)
if pred_bbox[taken][-1] == simple_str(t_bbox[-1]):
tp_cate +=1
tp_cate_list.append(pred_bbox[taken])
pred_bbox.remove(pred_bbox[taken])
fp = total_pred-tp
fp_list = pred_bbox
return tp,fp,fn,tp_cate,tp_list,fp_list,fn_list,tp_cate_list
def get_confusion_matrix(true_bbox,pred_bbox,iou):
y_true = []
y_pred = []
if len(true_bbox) == 0:
for p_bbox in pred_bbox:
y_true.append(ss.index('Not a bird'))
y_pred.append(ss.index(p_bbox[-1]))
else:
for t_bbox in true_bbox:
iou_val = []
for p_bbox in pred_bbox:
iou_val.append(IoU(t_bbox,p_bbox))
if iou_val!=[]:
if max(iou_val) < iou:
y_true.append(ss.index(simple_str(t_bbox[-1])))
y_pred.append(ss.index('Not a bird'))
else :
taken = iou_val.index(max(iou_val))
y_true.append(ss.index(simple_str(t_bbox[-1])))
y_pred.append(ss.index(pred_bbox[taken][-1]))
pred_bbox.remove(pred_bbox[taken])
else:
y_true.append(ss.index(simple_str(t_bbox[-1])))
y_pred.append(ss.index('Not a bird'))
return y_true,y_pred
def plot_confusion_matrix(y_true,y_pred,save_dir):
label_classes = [i for i in list(range(21))]
conf_matrix = confusion_matrix(y_true, y_pred, labels=label_classes)
df_cm = pd.DataFrame(conf_matrix, index = [i for i in list(range(21))],columns = label_classes)
plt.figure(figsize = (10,7))
sn.heatmap(df_cm, annot=True)
plt.savefig(os.path.join(save_dir,"confusion_matrix.png"))
with open(os.path.join(save_dir,"metrics.txt"), 'w') as f:
f.write('\nThe classification report shows below\n'+classification_report(y_true, y_pred, labels=label_classes))
def read_box_from_gt_txt(txt_dir,if_cate=False):
bbox_list = []
if if_cate:
txt_dir = txt_dir.replace('.txt','_class.txt')
with open(txt_dir, "r") as f:
lines = f.readlines()
if lines != []:
for line in lines:
part = line.split(',')
if if_cate:
bbox_list.append([int(part[-4]),int(part[-3]),int(part[-2]),int(part[-1]),part[1]])
else:
bbox_list.append([int(part[-4]),int(part[-3]),int(part[-2]),int(part[-1]),part[0]])
return bbox_list
def read_box_from_pred_txt(txt_dir,thresh = 0.0):
bbox_list = []
with open(txt_dir, "r") as f:
lines = f.readlines()
if lines != []:
for line in lines:
part = line.split(',')
if float(part[1]) < thresh:
continue
bbox_list.append([int(part[-4]),int(part[-3]),int(part[-2]),int(part[-1]),part[0]])
return bbox_list
def compare_draw(record,prediction_dir,ground_truth_dir,image_type = 'JPG',threshhold = 0.5,iou = 0.3,if_cate = True):
predict_txt_list = sorted(glob.glob(os.path.join(prediction_dir,'*.txt')))
false_pred = []
true_pred = []
false_neg =[]
precision_per_image =[]
recall_per_image = []
count_error_per_image = []
image_name = []
f1_score_per_image = []
tp_cates = []
if if_cate:
y_true_total = []
y_pred_total = []
for index in range(len(predict_txt_list)):
gt_txt = os.path.join(ground_truth_dir,os.path.split(predict_txt_list[index])[-1])
gt_list = read_box_from_gt_txt(gt_txt,if_cate)
pred_list = read_box_from_pred_txt(predict_txt_list[index],threshhold)
image_dir = gt_txt.replace('.txt','.{}'.format(image_type))
tp,fp,fn,tp_cate,tp_list,fp_list,fn_list,tp_cate_list = calculate_precis_recall(gt_list,pred_list,iou)
draw_image(image_dir,prediction_dir.replace('detection-results','visualize-results'),tp_list,fp_list,fn_list,tp_cate_list,if_cate)
false_pred.append(fp)
true_pred.append(tp)
false_neg.append(fn)
tp_cates.append(tp_cate)
precision_this_image = 0
recall_this_image = 0
f1_score_this_image = 0
count_error_this_image = 0
if tp != 0:
precision_this_image = round((1.0*tp)/(1.0*tp+1.0*fp),2)
recall_this_image = round((1.0*tp)/(1.0*tp+1.0*fn),2)
f1_score_this_image = round(2*precision_this_image*recall_this_image/(precision_this_image+recall_this_image),2)
if tp+fn != 0:
count_error_this_image = round(abs((1.0*fp-1.0*fn)/(1.0*tp+1.0*fn)),2)
record[index].extend([tp+fp,tp+fn,tp,fp,fn,precision_this_image,recall_this_image,f1_score_this_image,count_error_this_image])
count_error_per_image.append(count_error_this_image)
if if_cate:
gt_list = read_box_from_gt_txt(gt_txt,if_cate)
pred_list = read_box_from_pred_txt(predict_txt_list[index],threshhold)
y_true,y_pred = get_confusion_matrix(gt_list,pred_list,iou)
y_true_total.extend(y_true)
y_pred_total.extend(y_pred)
precision = (1.0*np.sum(true_pred))/(1.0*np.sum(true_pred)+1.0*np.sum(false_pred))
recall = (1.0*np.sum(true_pred)/(1.0*(np.sum(true_pred)+np.sum(false_neg))))
f1_score = 2*precision*recall/(precision+recall)
count_error = statistics.median(count_error_per_image)
cate_precision = (1.0*np.sum(tp_cates))/(1.0*np.sum(true_pred)+1.0*np.sum(false_pred))
cate_recall = (1.0*np.sum(tp_cates)/(1.0*(np.sum(true_pred)+np.sum(false_neg))))
cate_f1_score = 2*cate_precision*cate_recall/(cate_precision+cate_recall)
if if_cate:
plot_confusion_matrix(y_true_total,y_pred_total,prediction_dir.replace('detection-results',''))
return record,round(precision,2),round(recall,2),round(f1_score,2),round(cate_precision,2),round(cate_recall,2),round(cate_f1_score,2),round(count_error,2)