Spaces:
Runtime error
Runtime error
''' | |
Contributed by SagsMug. Modified by binary-husky | |
https://github.com/oobabooga/text-generation-webui/pull/175 | |
''' | |
import asyncio | |
import json | |
import random | |
import string | |
import websockets | |
import logging | |
import time | |
import threading | |
import importlib | |
from toolbox import get_conf | |
LLM_MODEL, = get_conf('LLM_MODEL') | |
# "TGUI:galactica-1.3b@localhost:7860" | |
model_name, addr_port = LLM_MODEL.split('@') | |
assert ':' in addr_port, "LLM_MODEL 格式不正确!" + LLM_MODEL | |
addr, port = addr_port.split(':') | |
def random_hash(): | |
letters = string.ascii_lowercase + string.digits | |
return ''.join(random.choice(letters) for i in range(9)) | |
async def run(context): | |
params = { | |
'max_new_tokens': 512, | |
'do_sample': True, | |
'temperature': 0.5, | |
'top_p': 0.9, | |
'typical_p': 1, | |
'repetition_penalty': 1.05, | |
'encoder_repetition_penalty': 1.0, | |
'top_k': 0, | |
'min_length': 0, | |
'no_repeat_ngram_size': 0, | |
'num_beams': 1, | |
'penalty_alpha': 0, | |
'length_penalty': 1, | |
'early_stopping': True, | |
'seed': -1, | |
} | |
session = random_hash() | |
async with websockets.connect(f"ws://{addr}:{port}/queue/join") as websocket: | |
while content := json.loads(await websocket.recv()): | |
#Python3.10 syntax, replace with if elif on older | |
if content["msg"] == "send_hash": | |
await websocket.send(json.dumps({ | |
"session_hash": session, | |
"fn_index": 12 | |
})) | |
elif content["msg"] == "estimation": | |
pass | |
elif content["msg"] == "send_data": | |
await websocket.send(json.dumps({ | |
"session_hash": session, | |
"fn_index": 12, | |
"data": [ | |
context, | |
params['max_new_tokens'], | |
params['do_sample'], | |
params['temperature'], | |
params['top_p'], | |
params['typical_p'], | |
params['repetition_penalty'], | |
params['encoder_repetition_penalty'], | |
params['top_k'], | |
params['min_length'], | |
params['no_repeat_ngram_size'], | |
params['num_beams'], | |
params['penalty_alpha'], | |
params['length_penalty'], | |
params['early_stopping'], | |
params['seed'], | |
] | |
})) | |
elif content["msg"] == "process_starts": | |
pass | |
elif content["msg"] in ["process_generating", "process_completed"]: | |
yield content["output"]["data"][0] | |
# You can search for your desired end indicator and | |
# stop generation by closing the websocket here | |
if (content["msg"] == "process_completed"): | |
break | |
def predict_tgui(inputs, top_p, temperature, chatbot=[], history=[], system_prompt='', stream = True, additional_fn=None): | |
""" | |
发送至chatGPT,流式获取输出。 | |
用于基础的对话功能。 | |
inputs 是本次问询的输入 | |
top_p, temperature是chatGPT的内部调优参数 | |
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误) | |
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容 | |
additional_fn代表点击的哪个按钮,按钮见functional.py | |
""" | |
if additional_fn is not None: | |
import functional | |
importlib.reload(functional) # 热更新prompt | |
functional = functional.get_functionals() | |
if "PreProcess" in functional[additional_fn]: inputs = functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话) | |
inputs = functional[additional_fn]["Prefix"] + inputs + functional[additional_fn]["Suffix"] | |
raw_input = "What I would like to say is the following: " + inputs | |
logging.info(f'[raw_input] {raw_input}') | |
history.extend([inputs, ""]) | |
chatbot.append([inputs, ""]) | |
yield chatbot, history, "等待响应" | |
prompt = inputs | |
tgui_say = "" | |
mutable = [""] | |
def run_coorotine(mutable): | |
async def get_result(mutable): | |
async for response in run(prompt): | |
print(response[len(mutable[0]):]) | |
mutable[0] = response | |
asyncio.run(get_result(mutable)) | |
thread_listen = threading.Thread(target=run_coorotine, args=(mutable,), daemon=True) | |
thread_listen.start() | |
while thread_listen.is_alive(): | |
time.sleep(1) | |
# Print intermediate steps | |
if tgui_say != mutable[0]: | |
tgui_say = mutable[0] | |
history[-1] = tgui_say | |
chatbot[-1] = (history[-2], history[-1]) | |
yield chatbot, history, "status_text" | |
logging.info(f'[response] {tgui_say}') | |
def predict_tgui_no_ui(inputs, top_p, temperature, history=[], sys_prompt=""): | |
raw_input = "What I would like to say is the following: " + inputs | |
prompt = inputs | |
tgui_say = "" | |
mutable = ["", time.time()] | |
def run_coorotine(mutable): | |
async def get_result(mutable): | |
async for response in run(prompt): | |
print(response[len(mutable[0]):]) | |
mutable[0] = response | |
asyncio.run(get_result(mutable)) | |
thread_listen = threading.Thread(target=run_coorotine, args=(mutable,)) | |
thread_listen.start() | |
thread_listen.join() | |
tgui_say = mutable[0] | |
return tgui_say | |