Spaces:
Running
on
Zero
Running
on
Zero
# Based on https://github.com/christophschuhmann/improved-aesthetic-predictor/blob/fe88a163f4661b4ddabba0751ff645e2e620746e/simple_inference.py | |
# import ipdb | |
# st = ipdb.set_trace | |
from importlib_resources import files | |
import torch | |
import torch.nn as nn | |
import numpy as np | |
from transformers import CLIPModel, CLIPProcessor | |
from PIL import Image | |
ASSETS_PATH = files("assets") | |
# ASSETS_PATH = "assets" | |
class MLPDiff(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.layers = nn.Sequential( | |
nn.Linear(768, 1024), | |
nn.Dropout(0.2), | |
nn.Linear(1024, 128), | |
nn.Dropout(0.2), | |
nn.Linear(128, 64), | |
nn.Dropout(0.1), | |
nn.Linear(64, 16), | |
nn.Linear(16, 1), | |
) | |
def forward(self, embed): | |
return self.layers(embed) | |
class AestheticScorerDiff(torch.nn.Module): | |
def __init__(self, dtype): | |
super().__init__() | |
self.clip = CLIPModel.from_pretrained("openai/clip-vit-large-patch14") | |
self.mlp = MLPDiff() | |
state_dict = torch.load(ASSETS_PATH.joinpath("sac+logos+ava1-l14-linearMSE.pth")) | |
self.mlp.load_state_dict(state_dict) | |
self.dtype = dtype | |
self.eval() | |
def __call__(self, images): | |
device = next(self.parameters()).device | |
embed = self.clip.get_image_features(pixel_values=images) | |
embed = embed / torch.linalg.vector_norm(embed, dim=-1, keepdim=True) | |
return self.mlp(embed).squeeze(1) | |