QinOwen commited on
Commit
824b515
1 Parent(s): b1828f2

add-vader-videocrafter

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitignore +231 -0
  2. Core/actpred_scorer.py +88 -0
  3. Core/aesthetic_scorer.py +46 -0
  4. Core/compression_scorer.py +111 -0
  5. Core/prompts.py +159 -0
  6. Core/weather_scorer.py +161 -0
  7. VADER-VideoCrafter/License +470 -0
  8. VADER-VideoCrafter/configs/inference_i2v_512_v1.0.yaml +83 -0
  9. VADER-VideoCrafter/configs/inference_t2v_1024_v1.0.yaml +77 -0
  10. VADER-VideoCrafter/configs/inference_t2v_512_v1.0.yaml +74 -0
  11. VADER-VideoCrafter/configs/inference_t2v_512_v2.0.yaml +77 -0
  12. VADER-VideoCrafter/lvdm/basics.py +100 -0
  13. VADER-VideoCrafter/lvdm/common.py +96 -0
  14. VADER-VideoCrafter/lvdm/distributions.py +96 -0
  15. VADER-VideoCrafter/lvdm/ema.py +77 -0
  16. VADER-VideoCrafter/lvdm/models/autoencoder.py +220 -0
  17. VADER-VideoCrafter/lvdm/models/ddpm3d.py +765 -0
  18. VADER-VideoCrafter/lvdm/models/samplers/ddim.py +368 -0
  19. VADER-VideoCrafter/lvdm/models/utils_diffusion.py +105 -0
  20. VADER-VideoCrafter/lvdm/modules/attention.py +476 -0
  21. VADER-VideoCrafter/lvdm/modules/encoders/condition.py +393 -0
  22. VADER-VideoCrafter/lvdm/modules/encoders/ip_resampler.py +137 -0
  23. VADER-VideoCrafter/lvdm/modules/networks/ae_modules.py +846 -0
  24. VADER-VideoCrafter/lvdm/modules/networks/openaimodel3d.py +578 -0
  25. VADER-VideoCrafter/lvdm/modules/x_transformer.py +640 -0
  26. VADER-VideoCrafter/readme.md +138 -0
  27. VADER-VideoCrafter/requirements.txt +28 -0
  28. VADER-VideoCrafter/scripts/main/ddp_wrapper.py +47 -0
  29. VADER-VideoCrafter/scripts/main/funcs.py +231 -0
  30. VADER-VideoCrafter/scripts/main/train_t2v_lora.py +817 -0
  31. VADER-VideoCrafter/scripts/run_text2video_inference.sh +30 -0
  32. VADER-VideoCrafter/scripts/run_text2video_train.sh +28 -0
  33. VADER-VideoCrafter/utils/utils.py +77 -0
  34. app.py +207 -4
  35. assets/activities.txt +3 -0
  36. assets/chatgpt_custom.txt +50 -0
  37. assets/chatgpt_custom_actpred.txt +41 -0
  38. assets/chatgpt_custom_actpred2.txt +50 -0
  39. assets/chatgpt_custom_animal.txt +24 -0
  40. assets/chatgpt_custom_animal_action.txt +40 -0
  41. assets/chatgpt_custom_animal_clothes.txt +50 -0
  42. assets/chatgpt_custom_animal_clothesV2.txt +50 -0
  43. assets/chatgpt_custom_animal_clothesV3.txt +96 -0
  44. assets/chatgpt_custom_animal_housework.txt +150 -0
  45. assets/chatgpt_custom_animal_sport.txt +25 -0
  46. assets/chatgpt_custom_animal_sportV2.txt +50 -0
  47. assets/chatgpt_custom_animal_technology.txt +50 -0
  48. assets/chatgpt_custom_banana.txt +50 -0
  49. assets/chatgpt_custom_book_cup.txt +25 -0
  50. assets/chatgpt_custom_book_cup_character.txt +25 -0
.gitignore ADDED
@@ -0,0 +1,231 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ **/__pycache__
2
+ **/*.pyc
3
+ **/*.log
4
+ **/*.png
5
+ **/*.jpg
6
+ **/*.mp4
7
+ HPSv2
8
+ **/HPSv2
9
+ wandb
10
+
11
+ # VADER-VideoCrafter
12
+ VADER-VideoCrafter/.DS_Store
13
+ VADER-VideoCrafter/.vscode
14
+ VADER-VideoCrafter/__pycache__
15
+ VADER-VideoCrafter/*.egg-info
16
+ VADER-VideoCrafter/checkpoints
17
+ VADER-VideoCrafter/results
18
+ VADER-VideoCrafter/wandb
19
+ VADER-VideoCrafter/project_dir
20
+ VADER-VideoCrafter/scripts/evaluation/__pycache__
21
+ VADER-VideoCrafter/scripts/lvdm/__pycache__
22
+
23
+
24
+ # Byte-compiled / optimized / DLL files
25
+ VADER-Open-Sora/__pycache__/
26
+ VADER-Open-Sora/scripts/__pycache__
27
+ VADER-Open-Sora/opensora/__pycache__
28
+ VADER-Open-Sora/*.py[cod]
29
+ VADER-Open-Sora/*$py.class
30
+
31
+ # C extensions
32
+ VADER-Open-Sora/*.so
33
+
34
+ # Distribution / packaging
35
+ VADER-Open-Sora/.Python
36
+ VADER-Open-Sora/build/
37
+ VADER-Open-Sora/develop-eggs/
38
+ VADER-Open-Sora/dist/
39
+ VADER-Open-Sora/downloads/
40
+ VADER-Open-Sora/eggs/
41
+ VADER-Open-Sora/.eggs/
42
+ VADER-Open-Sora/lib/
43
+ VADER-Open-Sora/lib64/
44
+ VADER-Open-Sora/parts/
45
+ VADER-Open-Sora/sdist/
46
+ VADER-Open-Sora/var/
47
+ VADER-Open-Sora/wheels/
48
+ VADER-Open-Sora/share/python-wheels/
49
+ VADER-Open-Sora/*.egg-info/
50
+ VADER-Open-Sora/.installed.cfg
51
+ VADER-Open-Sora/*.egg
52
+ VADER-Open-Sora/MANIFEST
53
+
54
+ # PyInstaller
55
+ # Usually these files are written by a python script from a template
56
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
57
+ VADER-Open-Sora/*.manifest
58
+ VADER-Open-Sora/*.spec
59
+
60
+ # Installer logs
61
+ VADER-Open-Sora/pip-log.txt
62
+ VADER-Open-Sora/pip-delete-this-directory.txt
63
+
64
+ # Unit test / coverage reports
65
+ VADER-Open-Sora/htmlcov/
66
+ VADER-Open-Sora/.tox/
67
+ VADER-Open-Sora/.nox/
68
+ VADER-Open-Sora/.coverage
69
+ VADER-Open-Sora/.coverage.*
70
+ VADER-Open-Sora/.cache
71
+ VADER-Open-Sora/nosetests.xml
72
+ VADER-Open-Sora/coverage.xml
73
+ VADER-Open-Sora/*.cover
74
+ VADER-Open-Sora/*.py,cover
75
+ VADER-Open-Sora/.hypothesis/
76
+ VADER-Open-Sora/.pytest_cache/
77
+ VADER-Open-Sora/cover/
78
+
79
+ # Translations
80
+ VADER-Open-Sora/*.mo
81
+ VADER-Open-Sora/*.pot
82
+
83
+ # Django stuff:
84
+ VADER-Open-Sora/*.log
85
+ VADER-Open-Sora/local_settings.py
86
+ VADER-Open-Sora/db.sqlite3
87
+ VADER-Open-Sora/db.sqlite3-journal
88
+
89
+ # Flask stuff:
90
+ VADER-Open-Sora/instance/
91
+ VADER-Open-Sora/.webassets-cache
92
+
93
+ # Scrapy stuff:
94
+ VADER-Open-Sora/.scrapy
95
+
96
+ # Sphinx documentation
97
+ VADER-Open-Sora/docs/_build/
98
+
99
+ # PyBuilder
100
+ VADER-Open-Sora/.pybuilder/
101
+ VADER-Open-Sora/target/
102
+
103
+ # Jupyter Notebook
104
+ VADER-Open-Sora/.ipynb_checkpoints
105
+
106
+ # IPython
107
+ VADER-Open-Sora/profile_default/
108
+ VADER-Open-Sora/ipython_config.py
109
+
110
+ # pyenv
111
+ # For a library or package, you might want to ignore these files since the code is
112
+ # intended to run in multiple environments; otherwise, check them in:
113
+ # .python-version
114
+
115
+ # pipenv
116
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
117
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
118
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
119
+ # install all needed dependencies.
120
+ #Pipfile.lock
121
+
122
+ # poetry
123
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
124
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
125
+ # commonly ignored for libraries.
126
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
127
+ #poetry.lock
128
+
129
+ # pdm
130
+ # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
131
+ #pdm.lock
132
+ # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
133
+ # in version control.
134
+ # https://pdm.fming.dev/#use-with-ide
135
+ VADER-Open-Sora/.pdm.toml
136
+
137
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
138
+ VADER-Open-Sora/__pypackages__/
139
+
140
+ # Celery stuff
141
+ VADER-Open-Sora/celerybeat-schedule
142
+ VADER-Open-Sora/celerybeat.pid
143
+
144
+ # SageMath parsed files
145
+ VADER-Open-Sora/*.sage.py
146
+
147
+ # Environments
148
+ VADER-Open-Sora/.env
149
+ VADER-Open-Sora/.venv
150
+ VADER-Open-Sora/env/
151
+ VADER-Open-Sora/venv/
152
+ VADER-Open-Sora/ENV/
153
+ VADER-Open-Sora/env.bak/
154
+ VADER-Open-Sora/venv.bak/
155
+
156
+
157
+ # Spyder project settings
158
+ VADER-Open-Sora/.spyderproject
159
+ VADER-Open-Sora/.spyproject
160
+
161
+ # Rope project settings
162
+ VADER-Open-Sora/.ropeproject
163
+
164
+ # mkdocs documentation
165
+ VADER-Open-Sora/site
166
+
167
+ # mypy
168
+ VADER-Open-Sora/.mypy_cache/
169
+ VADER-Open-Sora/.dmypy.json
170
+ VADER-Open-Sora/dmypy.json
171
+
172
+ # Pyre type checker
173
+ VADER-Open-Sora/.pyre/
174
+
175
+ # pytype static type analyzer
176
+ VADER-Open-Sora/.pytype/
177
+
178
+ # Cython debug symbols
179
+ VADER-Open-Sora/cython_debug/
180
+
181
+ # PyCharm
182
+ # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
183
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
184
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
185
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
186
+ VADER-Open-Sora/.idea/
187
+ VADER-Open-Sora/.vscode/
188
+
189
+ # macos
190
+ VADER-Open-Sora/*.DS_Store
191
+
192
+ # misc files
193
+ VADER-Open-Sora/data/
194
+ VADER-Open-Sora/dataset/
195
+ VADER-Open-Sora/runs/
196
+ VADER-Open-Sora/checkpoints/
197
+ VADER-Open-Sora/outputs/
198
+ VADER-Open-Sora/outputs
199
+ VADER-Open-Sora/samples/
200
+ VADER-Open-Sora/samples
201
+ VADER-Open-Sora/logs/
202
+ VADER-Open-Sora/pretrained_models/
203
+ VADER-Open-Sora/pretrained_models
204
+ VADER-Open-Sora/evaluation_results/
205
+ VADER-Open-Sora/cache/
206
+ VADER-Open-Sora/*.swp
207
+
208
+ # Secret files
209
+ VADER-Open-Sora/hostfile
210
+ VADER-Open-Sora/run.sh
211
+ VADER-Open-Sora/gradio_cached_examples/
212
+ VADER-Open-Sora/wandb/
213
+
214
+ # vae weights
215
+ VADER-Open-Sora/eval/vae/flolpips/weights/
216
+
217
+ # npm
218
+ VADER-Open-Sora/node_modules/
219
+ VADER-Open-Sora/package-lock.json
220
+ VADER-Open-Sora/package.json
221
+
222
+ # PLLaVA
223
+ VADER-Open-Sora/tools/caption/pllava_dir/PLLaVA/
224
+
225
+ # vbench
226
+ VADER-Open-Sora/vbench
227
+ VADER-Open-Sora/!eval/vbench
228
+ VADER-Open-Sora/vbench2_beta_i2v
229
+
230
+ # Video files
231
+ VADER-Open-Sora/project_dir
Core/actpred_scorer.py ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ from transformers import VideoMAEFeatureExtractor, VideoMAEForVideoClassification
3
+ import torch
4
+ import numpy as np
5
+
6
+ class ActPredScorer(torch.nn.Module):
7
+
8
+ def __init__(self, model_name = "MCG-NJU/videomae-base-finetuned-kinetics", num_frames = 16, device = 'cuda', dtype=torch.float32):
9
+ super().__init__()
10
+ self.model = VideoMAEForVideoClassification.from_pretrained(model_name, num_frames = num_frames, torch_dtype=dtype)
11
+ self.feature_extractor = VideoMAEFeatureExtractor.from_pretrained(model_name)
12
+ self.device = device
13
+ self.model.to(device)
14
+
15
+ def get_target_class_idx(self, target_action):
16
+ def mapping_func(x):
17
+ if 'piano' in x:
18
+ return 'playing piano'
19
+ if 'guitar' in x:
20
+ return 'playing guitar'
21
+ if 'doughnuts' in x:
22
+ return 'eating doughnuts'
23
+ if 'beer' in x:
24
+ return 'drinking beer'
25
+ if 'badminton' in x:
26
+ return 'playing badminton'
27
+ if 'cello' in x:
28
+ return 'playing cello'
29
+ if 'scooter' in x:
30
+ return 'riding scooter'
31
+ if 'ballet' in x:
32
+ return 'dancing ballet'
33
+ if 'pancake' in x:
34
+ return 'flipping pancake'
35
+ if 'violin' in x:
36
+ return 'playing violin'
37
+ if 'wood' in x:
38
+ return 'chopping wood'
39
+ if 'watermelon' in x:
40
+ return 'eating watermelon'
41
+ if 'jogging' in x:
42
+ return 'jogging'
43
+ else:
44
+ print(f"Please add your action mapping to ActPredScorer. Mapping not found for {x}")
45
+ raise NotImplementedError
46
+
47
+
48
+ try:
49
+ target_class_idx = self.model.config.label2id[target_action]
50
+ except:
51
+ target_class_idx = self.model.config.label2id[mapping_func(target_action)]
52
+ return target_class_idx
53
+
54
+ def get_loss_and_score(self, norm_vid, target_action):
55
+ ''' video should be a torch array of dtype float, with values from 0-1, of dimension (num_frames, height, width, 3)'''
56
+
57
+ target_class_idx = self.get_target_class_idx(target_action)
58
+ outputs = self.model(norm_vid, labels = torch.tensor([target_class_idx]).to(self.device))
59
+ loss = outputs.loss
60
+ logits = outputs.logits
61
+
62
+ norm_logits = torch.exp(logits)/ (torch.exp(logits).sum())
63
+ norm_logits = norm_logits.squeeze()
64
+
65
+ score = norm_logits[target_class_idx]
66
+ return loss, score, self.get_pred_class(logits)
67
+
68
+ def get_pred_class(self, logits):
69
+ predicted_class_idx = logits.argmax(-1).item()
70
+ return self.model.config.id2label[predicted_class_idx]
71
+
72
+ def gen_rand_labels_file(labels_list, out_file, num_labels = 50):
73
+ idxs = np.random.choice(len(labels_list), num_labels, replace = False)
74
+ rand_labels = [labels_list[i] for i in idxs]
75
+ rand_labels.sort()
76
+ with open(out_file, 'w') as f:
77
+ for line in rand_labels:
78
+ f.write(f"{line}\n")
79
+
80
+ if __name__ == '__main__':
81
+ # import numpy as np
82
+ # scorer = ActPredScorer(num_frames = 7)
83
+ # video_torch = [torch.randn((3,256,256)).clamp(0,1) for _ in range(7)]
84
+ # encoding = scorer.feature_extractor(video_torch, do_rescale = False, return_tensors="pt")
85
+ # print(scorer.get_loss_and_score(video_torch))
86
+ scorer = ActPredScorer(num_frames = 7)
87
+ labels = scorer.model.config.id2label
88
+
Core/aesthetic_scorer.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Based on https://github.com/christophschuhmann/improved-aesthetic-predictor/blob/fe88a163f4661b4ddabba0751ff645e2e620746e/simple_inference.py
2
+ # import ipdb
3
+ # st = ipdb.set_trace
4
+ from importlib_resources import files
5
+ import torch
6
+ import torch.nn as nn
7
+ import numpy as np
8
+ from transformers import CLIPModel, CLIPProcessor
9
+ from PIL import Image
10
+ ASSETS_PATH = files("assets")
11
+ # ASSETS_PATH = "assets"
12
+
13
+ class MLPDiff(nn.Module):
14
+ def __init__(self):
15
+ super().__init__()
16
+ self.layers = nn.Sequential(
17
+ nn.Linear(768, 1024),
18
+ nn.Dropout(0.2),
19
+ nn.Linear(1024, 128),
20
+ nn.Dropout(0.2),
21
+ nn.Linear(128, 64),
22
+ nn.Dropout(0.1),
23
+ nn.Linear(64, 16),
24
+ nn.Linear(16, 1),
25
+ )
26
+
27
+
28
+ def forward(self, embed):
29
+ return self.layers(embed)
30
+
31
+
32
+ class AestheticScorerDiff(torch.nn.Module):
33
+ def __init__(self, dtype):
34
+ super().__init__()
35
+ self.clip = CLIPModel.from_pretrained("openai/clip-vit-large-patch14")
36
+ self.mlp = MLPDiff()
37
+ state_dict = torch.load(ASSETS_PATH.joinpath("sac+logos+ava1-l14-linearMSE.pth"))
38
+ self.mlp.load_state_dict(state_dict)
39
+ self.dtype = dtype
40
+ self.eval()
41
+
42
+ def __call__(self, images):
43
+ device = next(self.parameters()).device
44
+ embed = self.clip.get_image_features(pixel_values=images)
45
+ embed = embed / torch.linalg.vector_norm(embed, dim=-1, keepdim=True)
46
+ return self.mlp(embed).squeeze(1)
Core/compression_scorer.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapt from Cheng An Hsieh, et. al.: https://github.com/RewardMultiverse/reward-multiverse
2
+ from PIL import Image
3
+ import io
4
+ import numpy as np
5
+ import torch.nn as nn
6
+ import torch
7
+ import torchvision
8
+ import albumentations as A
9
+ from transformers import CLIPModel, CLIPProcessor
10
+ # import ipdb
11
+ # st = ipdb.set_trace
12
+
13
+ def jpeg_compressibility(device):
14
+ def _fn(images):
15
+ '''
16
+ args:
17
+ images: shape NCHW
18
+ '''
19
+ org_type = images.dtype
20
+ if isinstance(images, torch.Tensor):
21
+ images = (images * 255).round().clamp(0, 255).to(torch.uint8).cpu().numpy()
22
+ images = images.transpose(0, 2, 3, 1) # NCHW -> NHWC
23
+
24
+ transform_images_tensor = torch.Tensor(np.array(images)).to(device, dtype=org_type)
25
+ transform_images_tensor = (transform_images_tensor.permute(0,3,1,2) / 255).clamp(0,1) # NHWC -> NCHW
26
+ transform_images_pil = [Image.fromarray(image) for image in images]
27
+ buffers = [io.BytesIO() for _ in transform_images_pil]
28
+
29
+ for image, buffer in zip(transform_images_pil, buffers):
30
+ image.save(buffer, format="JPEG", quality=95)
31
+
32
+ sizes = [buffer.tell() / 1000 for buffer in buffers]
33
+
34
+ return np.array(sizes), transform_images_tensor
35
+
36
+ return _fn
37
+
38
+
39
+ class MLP(nn.Module):
40
+ def __init__(self):
41
+ super().__init__()
42
+ self.layers = nn.Sequential(
43
+ nn.Linear(768, 512),
44
+ nn.ReLU(),
45
+ nn.Dropout(0.2),
46
+ nn.Linear(512, 256),
47
+ nn.ReLU(),
48
+ nn.Dropout(0.2),
49
+ nn.Linear(256, 128),
50
+ nn.ReLU(),
51
+ nn.Dropout(0.2),
52
+ nn.Linear(128, 32),
53
+ nn.ReLU(),
54
+ nn.Dropout(0.1),
55
+ nn.Linear(32, 1),
56
+ )
57
+
58
+ def forward(self, embed):
59
+ return self.layers(embed)
60
+
61
+ def jpegcompression_loss_fn(target=None,
62
+ grad_scale=0,
63
+ device=None,
64
+ accelerator=None,
65
+ torch_dtype=None,
66
+ reward_model_resume_from=None):
67
+ scorer = JpegCompressionScorer(dtype=torch_dtype, model_path=reward_model_resume_from).to(device, dtype=torch_dtype)
68
+ scorer.requires_grad_(False)
69
+ scorer.eval()
70
+ def loss_fn(im_pix_un):
71
+ if accelerator.mixed_precision == "fp16":
72
+ with accelerator.autocast():
73
+ rewards = scorer(im_pix_un)
74
+ else:
75
+ rewards = scorer(im_pix_un)
76
+
77
+ if target is None:
78
+ loss = rewards
79
+ else:
80
+ loss = abs(rewards - target)
81
+ return loss * grad_scale, rewards
82
+ return loss_fn
83
+
84
+ class JpegCompressionScorer(nn.Module):
85
+ def __init__(self, dtype=None, model_path=None):
86
+ super().__init__()
87
+ self.clip = CLIPModel.from_pretrained("openai/clip-vit-large-patch14")
88
+ self.clip.requires_grad_(False)
89
+ self.score_generator = MLP()
90
+
91
+ if model_path:
92
+ state_dict = torch.load(model_path)
93
+ self.score_generator.load_state_dict(state_dict)
94
+ if dtype:
95
+ self.dtype = dtype
96
+ self.target_size = (224,224)
97
+ self.normalize = torchvision.transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073],
98
+ std=[0.26862954, 0.26130258, 0.27577711])
99
+
100
+
101
+ def set_device(self, device, inference_type):
102
+ # self.clip.to(device, dtype = inference_type)
103
+ self.score_generator.to(device) # , dtype = inference_type
104
+
105
+ def __call__(self, images):
106
+ device = next(self.parameters()).device
107
+ im_pix = torchvision.transforms.Resize(self.target_size)(images)
108
+ im_pix = self.normalize(im_pix).to(images.dtype)
109
+ embed = self.clip.get_image_features(pixel_values=im_pix)
110
+ embed = embed / torch.linalg.vector_norm(embed, dim=-1, keepdim=True)
111
+ return self.score_generator(embed).squeeze(1)
Core/prompts.py ADDED
@@ -0,0 +1,159 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from importlib_resources import files
2
+ import os
3
+ import functools
4
+ import random
5
+ import inflect
6
+
7
+ IE = inflect.engine()
8
+ ASSETS_PATH = files("assets")
9
+ # ASSETS_PATH = "assets"
10
+
11
+
12
+ @functools.lru_cache(maxsize=None)
13
+ def _load_lines(path):
14
+ """
15
+ Load lines from a file. First tries to load from `path` directly, and if that doesn't exist, searches the
16
+ `ddpo_pytorch/assets` directory for a file named `path`.
17
+ """
18
+ if not os.path.exists(path):
19
+ newpath = ASSETS_PATH.joinpath(path)
20
+ if not os.path.exists(newpath):
21
+ raise FileNotFoundError(f"Could not find {path} or assets/{path}")
22
+ path = newpath
23
+ with open(path, "r") as f:
24
+ return [line.strip() for line in f.readlines()]
25
+
26
+ def hps_v2_all(nouns_file=None, activities_file=None):
27
+ return from_file("hps_v2_all.txt")
28
+
29
+ def hps_custom(nouns_file=None, activities_file=None):
30
+ return from_file("hps_custom.txt")
31
+
32
+ def hps_debug(nouns_file=None, activities_file=None):
33
+ return from_file("hps_debug.txt")
34
+
35
+ def hps_single(nouns_file=None, activities_file=None):
36
+ return from_file("hps_single.txt")
37
+
38
+ def kinetics_4rand(nouns_file=None, activities_file=None):
39
+ return from_file("kinetics_4rand.txt")
40
+
41
+ def kinetics_50rand(nouns_file=None, activities_file=None):
42
+ return from_file("kinetics_50rand.txt")
43
+
44
+ def simple_animals():
45
+ return from_file("simple_animals.txt")
46
+
47
+ def eval_simple_animals():
48
+ return from_file("eval_simple_animals.txt")
49
+
50
+ def eval_hps_v2_all(nouns_file=None, activities_file=None):
51
+ return from_file("hps_v2_all_eval.txt")
52
+
53
+ def chatgpt_custom(nouns_file=None, activities_file=None):
54
+ return from_file("chatgpt_custom.txt")
55
+
56
+ def chatgpt_custom_instruments(nouns_file=None, activities_file=None):
57
+ return from_file("chatgpt_custom_instruments.txt")
58
+
59
+ def chatgpt_custom_human(nouns_file=None, activities_file=None):
60
+ return from_file("chatgpt_custom_human.txt")
61
+
62
+ def chatgpt_custom_human_activity(nouns_file=None, activities_file=None):
63
+ return from_file("chatgpt_custom_human_activity.txt")
64
+
65
+ def chatgpt_custom_animal(nouns_file=None, activities_file=None):
66
+ return from_file("chatgpt_custom_animal.txt")
67
+
68
+ def chatgpt_custom_animal_sport(nouns_file=None, activities_file=None):
69
+ return from_file("chatgpt_custom_animal_sport.txt")
70
+
71
+ def chatgpt_custom_animal_sportV2(nouns_file=None, activities_file=None):
72
+ return from_file("chatgpt_custom_animal_sportV2.txt")
73
+
74
+ def chatgpt_custom_animal_clothes(nouns_file=None, activities_file=None):
75
+ return from_file("chatgpt_custom_animal_clothes.txt")
76
+
77
+ def chatgpt_custom_animal_clothesV2(nouns_file=None, activities_file=None):
78
+ return from_file("chatgpt_custom_animal_clothesV2.txt")
79
+
80
+ def chatgpt_custom_animal_clothesV3(nouns_file=None, activities_file=None):
81
+ return from_file("chatgpt_custom_animal_clothesV3.txt")
82
+
83
+ def chatgpt_custom_animal_technology(nouns_file=None, activities_file=None):
84
+ return from_file("chatgpt_custom_animal_technology.txt")
85
+
86
+ def chatgpt_custom_animal_housework(nouns_file=None, activities_file=None):
87
+ return from_file("chatgpt_custom_animal_housework.txt")
88
+
89
+ def chatgpt_custom_animal_action(nouns_file=None, activities_file=None):
90
+ return from_file("chatgpt_custom_animal_action.txt")
91
+
92
+ def chatgpt_custom_outdoor(nouns_file=None, activities_file=None):
93
+ return from_file("chatgpt_custom_outdoor.txt")
94
+
95
+ def chatgpt_custom_rainy(nouns_file=None, activities_file=None):
96
+ return from_file("chatgpt_custom_rainy.txt")
97
+
98
+ def chatgpt_custom_snowy(nouns_file=None, activities_file=None):
99
+ return from_file("chatgpt_custom_snowy.txt")
100
+
101
+ def chatgpt_custom_dog(nouns_file=None, activities_file=None):
102
+ return from_file("chatgpt_custom_dog.txt")
103
+
104
+ def chatgpt_custom_banana(nouns_file=None, activities_file=None):
105
+ return from_file("chatgpt_custom_banana.txt")
106
+
107
+ def chatgpt_custom_forest(nouns_file=None, activities_file=None):
108
+ return from_file("chatgpt_custom_forest.txt")
109
+
110
+ def chatgpt_custom_forest_vivid(nouns_file=None, activities_file=None):
111
+ return from_file("chatgpt_custom_forest_vivid.txt")
112
+
113
+ def chatgpt_custom_cruel_animal(nouns_file=None, activities_file=None):
114
+ return from_file("chatgpt_custom_cruel_animal.txt")
115
+
116
+ def chatgpt_custom_cruel_animal2(nouns_file=None, activities_file=None):
117
+ return from_file("chatgpt_custom_cruel_animal2.txt")
118
+
119
+ def chatgpt_custom_bottle_glass(nouns_file=None, activities_file=None):
120
+ return from_file("chatgpt_custom_bottle_glass.txt")
121
+
122
+ def chatgpt_custom_book_cup(nouns_file=None, activities_file=None):
123
+ return from_file("chatgpt_custom_book_cup.txt")
124
+
125
+ def chatgpt_custom_book_cup_character(nouns_file=None, activities_file=None):
126
+ return from_file("chatgpt_custom_book_cup_character.txt")
127
+
128
+ def chatgpt_custom_cute(nouns_file=None, activities_file=None):
129
+ return from_file("chatgpt_custom_cute.txt")
130
+
131
+ def chatgpt_custom_ice(nouns_file=None, activities_file=None):
132
+ return from_file("chatgpt_custom_ice.txt")
133
+
134
+ def chatgpt_custom_compression(nouns_file=None, activities_file=None):
135
+ return from_file("chatgpt_custom_compression.txt")
136
+
137
+ def chatgpt_custom_compression_animals(nouns_file=None, activities_file=None):
138
+ return from_file("chatgpt_custom_compression_animals.txt")
139
+
140
+ def chatgpt_custom_actpred(nouns_file=None, activities_file=None):
141
+ return from_file("chatgpt_custom_actpred.txt")
142
+
143
+ def chatgpt_custom_actpred2(nouns_file=None, activities_file=None):
144
+ return from_file("chatgpt_custom_actpred2.txt")
145
+
146
+ def chatgpt_custom_instruments_unseen(nouns_file=None, activities_file=None):
147
+ return from_file("chatgpt_custom_instruments_unseen.txt")
148
+
149
+ def from_file(path, low=None, high=None, **kwargs):
150
+ prompts = _load_lines(path)[low:high]
151
+ return random.choice(prompts), {}
152
+
153
+ def from_str(_str, **kwargs):
154
+ return _str, {}
155
+
156
+ def nouns_activities(nouns_file, activities_file, **kwargs):
157
+ nouns = _load_lines(nouns_file)
158
+ activities = _load_lines(activities_file)
159
+ return f"{IE.a(random.choice(nouns))} {random.choice(activities)}", {}
Core/weather_scorer.py ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copy from Cheng An Hsieh, et. al.: https://github.com/RewardMultiverse/reward-multiverse
2
+ import torch
3
+ import torch.nn as nn
4
+ import torchvision
5
+ from transformers import CLIPModel, CLIPProcessor
6
+
7
+ class SimpleCNN(nn.Module): # parameter = 6333513
8
+ def __init__(self, num_class = None):
9
+ super(SimpleCNN, self).__init__()
10
+ self.layer1 = nn.Sequential(
11
+ nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1),
12
+ nn.ReLU(),
13
+ nn.MaxPool2d(kernel_size=2, stride=2))
14
+ self.layer2 = nn.Sequential(
15
+ nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1),
16
+ nn.ReLU(),
17
+ nn.MaxPool2d(kernel_size=2, stride=2))
18
+ self.layer3 = nn.Sequential(
19
+ nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1),
20
+ nn.ReLU(),
21
+ nn.MaxPool2d(kernel_size=2, stride=2))
22
+ self.layer4 = nn.Sequential(
23
+ nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
24
+ nn.ReLU(),
25
+ nn.MaxPool2d(kernel_size=2, stride=2))
26
+ self.fc1 = nn.Linear(128 * 32 * 32, 1000)
27
+ self.fc2 = nn.Linear(1000, num_class)
28
+
29
+ def forward(self, x):
30
+ x = self.layer1(x)
31
+ # print("x1", x.shape)
32
+ x = self.layer2(x)
33
+ # print("x2", x.shape)
34
+ x = self.layer3(x)
35
+ # print("x3", x.shape)
36
+ x = self.layer4(x)
37
+ # print("x4", x.shape)
38
+
39
+ x = x.reshape(x.size(0), -1)
40
+ # print("x reshape", x.shape)
41
+ x = torch.relu(self.fc1(x))
42
+ x = self.fc2(x)
43
+ return x
44
+
45
+
46
+ class MLP(nn.Module):
47
+ def __init__(self):
48
+ super().__init__()
49
+ self.layers = nn.Sequential( # regression
50
+ nn.Linear(768, 1024),
51
+ nn.Dropout(0.2),
52
+ nn.Linear(1024, 128),
53
+ nn.Dropout(0.2),
54
+ nn.Linear(128, 64),
55
+ nn.Dropout(0.1),
56
+ nn.Linear(64, 16),
57
+ nn.Linear(16, 1),
58
+ nn.Sigmoid()
59
+ )
60
+
61
+ # self.layers = nn.Sequential( # classification
62
+ # nn.Linear(768, 1024),
63
+ # nn.Dropout(0.2),
64
+ # nn.Linear(1024, 128),
65
+ # nn.Dropout(0.2),
66
+ # nn.Linear(128, 64),
67
+ # nn.Dropout(0.1),
68
+ # nn.Linear(64, 16),
69
+ # nn.Linear(16, 2)
70
+ # )
71
+
72
+ def forward(self, embed):
73
+ return self.layers(embed)
74
+
75
+ class MLP_Resnet(nn.Module):
76
+ def __init__(self, num_class):
77
+ super().__init__()
78
+ self.layers = nn.Sequential(
79
+ nn.Linear(1000, 128),
80
+ # nn.Dropout(0.2),
81
+ nn.Linear(128, 64),
82
+ # nn.Dropout(0.2),
83
+ nn.Linear(64, 16),
84
+ nn.Linear(16, num_class),
85
+ )
86
+
87
+ def forward(self, embed):
88
+ return self.layers(embed)
89
+
90
+
91
+ def weather_loss_fn(target=None, # TODO: use config.task to decide returned loss_fn
92
+ grad_scale=0,
93
+ device=None,
94
+ accelerator=None,
95
+ torch_dtype=None,
96
+ reward_model_resume_from=None,
97
+ num_of_labels=None):
98
+ scorer = WeatherScorer(dtype=torch_dtype, model_path=reward_model_resume_from, num_class=num_of_labels).to(device, dtype=torch_dtype)
99
+ scorer.requires_grad_(False)
100
+ scorer.eval()
101
+
102
+ def loss_fn(im_pix_un):
103
+ if accelerator.mixed_precision == "fp16":
104
+ with accelerator.autocast():
105
+ rewards = scorer(im_pix_un)
106
+ else:
107
+ rewards = scorer(im_pix_un)
108
+
109
+ target_tensors = torch.full((rewards.shape[0],), target).to(rewards.device, dtype=rewards.dtype) # regression
110
+ criterion = torch.nn.MSELoss(reduction = "sum") # regression
111
+ # target_tensors = torch.full((rewards.shape[0],), target).to(rewards.device, dtype=torch.long) # classification
112
+ # criterion = nn.CrossEntropyLoss(reduction="sum") # classification
113
+ loss = criterion(rewards, target_tensors)
114
+ return loss * grad_scale, rewards #nn.Softmax(dim=-1)(rewards) # rewards (reg)
115
+ return loss_fn
116
+
117
+
118
+ class WeatherModel(nn.Module):
119
+ def __init__(self, num_class = None):
120
+ super().__init__()
121
+ self.embed_model = torch.hub.load('pytorch/vision:v0.10.0', 'resnet18', pretrained=True)
122
+ self.score_model = MLP_Resnet(num_class)
123
+ def __call__(self, im):
124
+ return self.score_model(self.embed_model(im))
125
+
126
+
127
+ class WeatherScorer(nn.Module): # Reward model
128
+ def __init__(self, dtype=None, model_path = None, num_class = None):
129
+ super().__init__()
130
+ self.clip = CLIPModel.from_pretrained("openai/clip-vit-large-patch14")
131
+ self.clip.requires_grad_(False)
132
+ self.clip.eval()
133
+ self.score_generator = MLP()
134
+ # self.score_generator = WeatherModel(num_class) # resnet + mlp
135
+ if model_path:
136
+ state_dict = torch.load(model_path)
137
+ self.score_generator.load_state_dict(state_dict)
138
+ self.score_generator.requires_grad_(False)
139
+ self.score_generator.eval()
140
+ # self.clip.requires_grad_(False)
141
+ # self.clip.eval()
142
+ else:
143
+ self.score_generator.requires_grad_(True)
144
+ if dtype:
145
+ self.dtype = dtype
146
+ self.target_size = (224,224) # resnet 224, cnn 512 (use 224 for both...?)
147
+ self.normalize = torchvision.transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073],
148
+ std=[0.26862954, 0.26130258, 0.27577711])
149
+
150
+ def set_device(self, device, inference_type):
151
+ self.clip.to(device, dtype = inference_type) # uncomment for mlp
152
+ self.score_generator.to(device) # dtype = inference_dtype
153
+
154
+ def __call__(self, images):
155
+ device = next(self.parameters()).device
156
+ im_pix = torchvision.transforms.Resize(self.target_size)(images)
157
+ im_pix = self.normalize(im_pix).to(images.dtype)
158
+ embed = self.clip.get_image_features(pixel_values=im_pix)
159
+ embed = embed / torch.linalg.vector_norm(embed, dim=-1, keepdim=True)
160
+ return self.score_generator(embed).squeeze(1) # CLIP + MLP
161
+ # return self.score_generator(im_pix).squeeze(1) # for simpleCNN
VADER-VideoCrafter/License ADDED
@@ -0,0 +1,470 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ This license applies to the source codes that are open sourced in connection with the VideoCrafter1.
2
+
3
+ Copyright (C) 2023 THL A29 Limited, a Tencent company.
4
+
5
+ Apache License
6
+ Version 2.0, January 2004
7
+ http://www.apache.org/licenses/
8
+
9
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
10
+
11
+ 1. Definitions.
12
+
13
+ "License" shall mean the terms and conditions for use, reproduction,
14
+ and distribution as defined by Sections 1 through 9 of this document.
15
+
16
+ "Licensor" shall mean the copyright owner or entity authorized by
17
+ the copyright owner that is granting the License.
18
+
19
+ "Legal Entity" shall mean the union of the acting entity and all
20
+ other entities that control, are controlled by, or are under common
21
+ control with that entity. For the purposes of this definition,
22
+ "control" means (i) the power, direct or indirect, to cause the
23
+ direction or management of such entity, whether by contract or
24
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
25
+ outstanding shares, or (iii) beneficial ownership of such entity.
26
+
27
+ "You" (or "Your") shall mean an individual or Legal Entity
28
+ exercising permissions granted by this License.
29
+
30
+ "Source" form shall mean the preferred form for making modifications,
31
+ including but not limited to software source code, documentation
32
+ source, and configuration files.
33
+
34
+ "Object" form shall mean any form resulting from mechanical
35
+ transformation or translation of a Source form, including but
36
+ not limited to compiled object code, generated documentation,
37
+ and conversions to other media types.
38
+
39
+ "Work" shall mean the work of authorship, whether in Source or
40
+ Object form, made available under the License, as indicated by a
41
+ copyright notice that is included in or attached to the work
42
+ (an example is provided in the Appendix below).
43
+
44
+ "Derivative Works" shall mean any work, whether in Source or Object
45
+ form, that is based on (or derived from) the Work and for which the
46
+ editorial revisions, annotations, elaborations, or other modifications
47
+ represent, as a whole, an original work of authorship. For the purposes
48
+ of this License, Derivative Works shall not include works that remain
49
+ separable from, or merely link (or bind by name) to the interfaces of,
50
+ the Work and Derivative Works thereof.
51
+
52
+ "Contribution" shall mean any work of authorship, including
53
+ the original version of the Work and any modifications or additions
54
+ to that Work or Derivative Works thereof, that is intentionally
55
+ submitted to Licensor for inclusion in the Work by the copyright owner
56
+ or by an individual or Legal Entity authorized to submit on behalf of
57
+ the copyright owner. For the purposes of this definition, "submitted"
58
+ means any form of electronic, verbal, or written communication sent
59
+ to the Licensor or its representatives, including but not limited to
60
+ communication on electronic mailing lists, source code control systems,
61
+ and issue tracking systems that are managed by, or on behalf of, the
62
+ Licensor for the purpose of discussing and improving the Work, but
63
+ excluding communication that is conspicuously marked or otherwise
64
+ designated in writing by the copyright owner as "Not a Contribution."
65
+
66
+ "Contributor" shall mean Licensor and any individual or Legal Entity
67
+ on behalf of whom a Contribution has been received by Licensor and
68
+ subsequently incorporated within the Work.
69
+
70
+ 2. Grant of Copyright License. Subject to the terms and conditions of
71
+ this License, each Contributor hereby grants to You a perpetual,
72
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
73
+ copyright license to reproduce, prepare Derivative Works of,
74
+ publicly display, publicly perform, sublicense, and distribute the
75
+ Work and such Derivative Works in Source or Object form.
76
+
77
+ 3. Grant of Patent License. Subject to the terms and conditions of
78
+ this License, each Contributor hereby grants to You a perpetual,
79
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
80
+ (except as stated in this section) patent license to make, have made,
81
+ use, offer to sell, sell, import, and otherwise transfer the Work,
82
+ where such license applies only to those patent claims licensable
83
+ by such Contributor that are necessarily infringed by their
84
+ Contribution(s) alone or by combination of their Contribution(s)
85
+ with the Work to which such Contribution(s) was submitted. If You
86
+ institute patent litigation against any entity (including a
87
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
88
+ or a Contribution incorporated within the Work constitutes direct
89
+ or contributory patent infringement, then any patent licenses
90
+ granted to You under this License for that Work shall terminate
91
+ as of the date such litigation is filed.
92
+
93
+ 4. Redistribution. You may reproduce and distribute copies of the
94
+ Work or Derivative Works thereof in any medium, with or without
95
+ modifications, and in Source or Object form, provided that You
96
+ meet the following conditions:
97
+
98
+ (a) You must give any other recipients of the Work or
99
+ Derivative Works a copy of this License; and
100
+
101
+ (b) You must cause any modified files to carry prominent notices
102
+ stating that You changed the files; and
103
+
104
+ (c) You must retain, in the Source form of any Derivative Works
105
+ that You distribute, all copyright, patent, trademark, and
106
+ attribution notices from the Source form of the Work,
107
+ excluding those notices that do not pertain to any part of
108
+ the Derivative Works; and
109
+
110
+ (d) If the Work includes a "NOTICE" text file as part of its
111
+ distribution, then any Derivative Works that You distribute must
112
+ include a readable copy of the attribution notices contained
113
+ within such NOTICE file, excluding those notices that do not
114
+ pertain to any part of the Derivative Works, in at least one
115
+ of the following places: within a NOTICE text file distributed
116
+ as part of the Derivative Works; within the Source form or
117
+ documentation, if provided along with the Derivative Works; or,
118
+ within a display generated by the Derivative Works, if and
119
+ wherever such third-party notices normally appear. The contents
120
+ of the NOTICE file are for informational purposes only and
121
+ do not modify the License. You may add Your own attribution
122
+ notices within Derivative Works that You distribute, alongside
123
+ or as an addendum to the NOTICE text from the Work, provided
124
+ that such additional attribution notices cannot be construed
125
+ as modifying the License.
126
+
127
+ You may add Your own copyright statement to Your modifications and
128
+ may provide additional or different license terms and conditions
129
+ for use, reproduction, or distribution of Your modifications, or
130
+ for any such Derivative Works as a whole, provided Your use,
131
+ reproduction, and distribution of the Work otherwise complies with
132
+ the conditions stated in this License.
133
+
134
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
135
+ any Contribution intentionally submitted for inclusion in the Work
136
+ by You to the Licensor shall be under the terms and conditions of
137
+ this License, without any additional terms or conditions.
138
+ Notwithstanding the above, nothing herein shall supersede or modify
139
+ the terms of any separate license agreement you may have executed
140
+ with Licensor regarding such Contributions.
141
+
142
+ 6. Trademarks. This License does not grant permission to use the trade
143
+ names, trademarks, service marks, or product names of the Licensor,
144
+ except as required for reasonable and customary use in describing the
145
+ origin of the Work and reproducing the content of the NOTICE file.
146
+
147
+ 7. Disclaimer of Warranty. Unless required by applicable law or
148
+ agreed to in writing, Licensor provides the Work (and each
149
+ Contributor provides its Contributions) on an "AS IS" BASIS,
150
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
151
+ implied, including, without limitation, any warranties or conditions
152
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
153
+ PARTICULAR PURPOSE. You are solely responsible for determining the
154
+ appropriateness of using or redistributing the Work and assume any
155
+ risks associated with Your exercise of permissions under this License.
156
+
157
+ 8. Limitation of Liability. In no event and under no legal theory,
158
+ whether in tort (including negligence), contract, or otherwise,
159
+ unless required by applicable law (such as deliberate and grossly
160
+ negligent acts) or agreed to in writing, shall any Contributor be
161
+ liable to You for damages, including any direct, indirect, special,
162
+ incidental, or consequential damages of any character arising as a
163
+ result of this License or out of the use or inability to use the
164
+ Work (including but not limited to damages for loss of goodwill,
165
+ work stoppage, computer failure or malfunction, or any and all
166
+ other commercial damages or losses), even if such Contributor
167
+ has been advised of the possibility of such damages.
168
+
169
+ 9. Accepting Warranty or Additional Liability. While redistributing
170
+ the Work or Derivative Works thereof, You may choose to offer,
171
+ and charge a fee for, acceptance of support, warranty, indemnity,
172
+ or other liability obligations and/or rights consistent with this
173
+ License. However, in accepting such obligations, You may act only
174
+ on Your own behalf and on Your sole responsibility, not on behalf
175
+ of any other Contributor, and only if You agree to indemnify,
176
+ defend, and hold each Contributor harmless for any liability
177
+ incurred by, or claims asserted against, such Contributor by reason
178
+ of your accepting any such warranty or additional liability.
179
+
180
+ 10. This code is provided for research purposes only and is
181
+ not to be used for any commercial purposes. By using this code,
182
+ you agree that it will be used solely for academic research, scholarly work,
183
+ and non-commercial activities. Any use of this code for commercial purposes,
184
+ including but not limited to, selling, distributing, or incorporating it into
185
+ commercial products or services, is strictly prohibited. Violation of this
186
+ clause may result in legal actions and penalties.
187
+
188
+ END OF TERMS AND CONDITIONS
189
+
190
+ APPENDIX: How to apply the Apache License to your work.
191
+
192
+ To apply the Apache License to your work, attach the following
193
+ boilerplate notice, with the fields enclosed by brackets "[]"
194
+ replaced with your own identifying information. (Don't include
195
+ the brackets!) The text should be enclosed in the appropriate
196
+ comment syntax for the file format. We also recommend that a
197
+ file or class name and description of purpose be included on the
198
+ same "printed page" as the copyright notice for easier
199
+ identification within third-party archives.
200
+
201
+ Copyright [yyyy] [name of copyright owner]
202
+
203
+ Licensed under the Apache License, Version 2.0 (the "License");
204
+ you may not use this file except in compliance with the License.
205
+ You may obtain a copy of the License at
206
+
207
+ http://www.apache.org/licenses/LICENSE-2.0
208
+
209
+ Unless required by applicable law or agreed to in writing, software
210
+ distributed under the License is distributed on an "AS IS" BASIS,
211
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
212
+ See the License for the specific language governing permissions and
213
+ limitations under the License.
214
+
215
+
216
+ Other dependencies and licenses (if such optional components are used):
217
+
218
+
219
+ Components under BSD 3-Clause License:
220
+ ------------------------------------------------
221
+ 1. numpy
222
+ Copyright (c) 2005-2022, NumPy Developers.
223
+ All rights reserved.
224
+
225
+ 2. pytorch
226
+ Copyright (c) 2016- Facebook, Inc (Adam Paszke)
227
+ Copyright (c) 2014- Facebook, Inc (Soumith Chintala)
228
+ Copyright (c) 2011-2014 Idiap Research Institute (Ronan Collobert)
229
+ Copyright (c) 2012-2014 Deepmind Technologies (Koray Kavukcuoglu)
230
+ Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu)
231
+ Copyright (c) 2011-2013 NYU (Clement Farabet)
232
+ Copyright (c) 2006-2010 NEC Laboratories America (Ronan Collobert, Leon Bottou, Iain Melvin, Jason Weston)
233
+ Copyright (c) 2006 Idiap Research Institute (Samy Bengio)
234
+ Copyright (c) 2001-2004 Idiap Research Institute (Ronan Collobert, Samy Bengio, Johnny Mariethoz)
235
+
236
+ 3. torchvision
237
+ Copyright (c) Soumith Chintala 2016,
238
+ All rights reserved.
239
+
240
+ Redistribution and use in source and binary forms, with or without
241
+ modification, are permitted provided that the following conditions are met:
242
+
243
+ * Redistributions of source code must retain the above copyright notice, this
244
+ list of conditions and the following disclaimer.
245
+
246
+ * Redistributions in binary form must reproduce the above copyright notice,
247
+ this list of conditions and the following disclaimer in the documentation
248
+ and/or other materials provided with the distribution.
249
+
250
+ * Neither the name of the copyright holder nor the names of its
251
+ contributors may be used to endorse or promote products derived from
252
+ this software without specific prior written permission.
253
+
254
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
255
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
256
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
257
+ DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
258
+ FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
259
+ DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
260
+ SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
261
+ CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
262
+ OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
263
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
264
+
265
+ Component under Apache v2 License:
266
+ -----------------------------------------------------
267
+ 1. timm
268
+ Copyright 2019 Ross Wightman
269
+
270
+ Apache License
271
+ Version 2.0, January 2004
272
+ http://www.apache.org/licenses/
273
+
274
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
275
+
276
+ 1. Definitions.
277
+
278
+ "License" shall mean the terms and conditions for use, reproduction,
279
+ and distribution as defined by Sections 1 through 9 of this document.
280
+
281
+ "Licensor" shall mean the copyright owner or entity authorized by
282
+ the copyright owner that is granting the License.
283
+
284
+ "Legal Entity" shall mean the union of the acting entity and all
285
+ other entities that control, are controlled by, or are under common
286
+ control with that entity. For the purposes of this definition,
287
+ "control" means (i) the power, direct or indirect, to cause the
288
+ direction or management of such entity, whether by contract or
289
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
290
+ outstanding shares, or (iii) beneficial ownership of such entity.
291
+
292
+ "You" (or "Your") shall mean an individual or Legal Entity
293
+ exercising permissions granted by this License.
294
+
295
+ "Source" form shall mean the preferred form for making modifications,
296
+ including but not limited to software source code, documentation
297
+ source, and configuration files.
298
+
299
+ "Object" form shall mean any form resulting from mechanical
300
+ transformation or translation of a Source form, including but
301
+ not limited to compiled object code, generated documentation,
302
+ and conversions to other media types.
303
+
304
+ "Work" shall mean the work of authorship, whether in Source or
305
+ Object form, made available under the License, as indicated by a
306
+ copyright notice that is included in or attached to the work
307
+ (an example is provided in the Appendix below).
308
+
309
+ "Derivative Works" shall mean any work, whether in Source or Object
310
+ form, that is based on (or derived from) the Work and for which the
311
+ editorial revisions, annotations, elaborations, or other modifications
312
+ represent, as a whole, an original work of authorship. For the purposes
313
+ of this License, Derivative Works shall not include works that remain
314
+ separable from, or merely link (or bind by name) to the interfaces of,
315
+ the Work and Derivative Works thereof.
316
+
317
+ "Contribution" shall mean any work of authorship, including
318
+ the original version of the Work and any modifications or additions
319
+ to that Work or Derivative Works thereof, that is intentionally
320
+ submitted to Licensor for inclusion in the Work by the copyright owner
321
+ or by an individual or Legal Entity authorized to submit on behalf of
322
+ the copyright owner. For the purposes of this definition, "submitted"
323
+ means any form of electronic, verbal, or written communication sent
324
+ to the Licensor or its representatives, including but not limited to
325
+ communication on electronic mailing lists, source code control systems,
326
+ and issue tracking systems that are managed by, or on behalf of, the
327
+ Licensor for the purpose of discussing and improving the Work, but
328
+ excluding communication that is conspicuously marked or otherwise
329
+ designated in writing by the copyright owner as "Not a Contribution."
330
+
331
+ "Contributor" shall mean Licensor and any individual or Legal Entity
332
+ on behalf of whom a Contribution has been received by Licensor and
333
+ subsequently incorporated within the Work.
334
+
335
+ 2. Grant of Copyright License. Subject to the terms and conditions of
336
+ this License, each Contributor hereby grants to You a perpetual,
337
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
338
+ copyright license to reproduce, prepare Derivative Works of,
339
+ publicly display, publicly perform, sublicense, and distribute the
340
+ Work and such Derivative Works in Source or Object form.
341
+
342
+ 3. Grant of Patent License. Subject to the terms and conditions of
343
+ this License, each Contributor hereby grants to You a perpetual,
344
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
345
+ (except as stated in this section) patent license to make, have made,
346
+ use, offer to sell, sell, import, and otherwise transfer the Work,
347
+ where such license applies only to those patent claims licensable
348
+ by such Contributor that are necessarily infringed by their
349
+ Contribution(s) alone or by combination of their Contribution(s)
350
+ with the Work to which such Contribution(s) was submitted. If You
351
+ institute patent litigation against any entity (including a
352
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
353
+ or a Contribution incorporated within the Work constitutes direct
354
+ or contributory patent infringement, then any patent licenses
355
+ granted to You under this License for that Work shall terminate
356
+ as of the date such litigation is filed.
357
+
358
+ 4. Redistribution. You may reproduce and distribute copies of the
359
+ Work or Derivative Works thereof in any medium, with or without
360
+ modifications, and in Source or Object form, provided that You
361
+ meet the following conditions:
362
+
363
+ (a) You must give any other recipients of the Work or
364
+ Derivative Works a copy of this License; and
365
+
366
+ (b) You must cause any modified files to carry prominent notices
367
+ stating that You changed the files; and
368
+
369
+ (c) You must retain, in the Source form of any Derivative Works
370
+ that You distribute, all copyright, patent, trademark, and
371
+ attribution notices from the Source form of the Work,
372
+ excluding those notices that do not pertain to any part of
373
+ the Derivative Works; and
374
+
375
+ (d) If the Work includes a "NOTICE" text file as part of its
376
+ distribution, then any Derivative Works that You distribute must
377
+ include a readable copy of the attribution notices contained
378
+ within such NOTICE file, excluding those notices that do not
379
+ pertain to any part of the Derivative Works, in at least one
380
+ of the following places: within a NOTICE text file distributed
381
+ as part of the Derivative Works; within the Source form or
382
+ documentation, if provided along with the Derivative Works; or,
383
+ within a display generated by the Derivative Works, if and
384
+ wherever such third-party notices normally appear. The contents
385
+ of the NOTICE file are for informational purposes only and
386
+ do not modify the License. You may add Your own attribution
387
+ notices within Derivative Works that You distribute, alongside
388
+ or as an addendum to the NOTICE text from the Work, provided
389
+ that such additional attribution notices cannot be construed
390
+ as modifying the License.
391
+
392
+ You may add Your own copyright statement to Your modifications and
393
+ may provide additional or different license terms and conditions
394
+ for use, reproduction, or distribution of Your modifications, or
395
+ for any such Derivative Works as a whole, provided Your use,
396
+ reproduction, and distribution of the Work otherwise complies with
397
+ the conditions stated in this License.
398
+
399
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
400
+ any Contribution intentionally submitted for inclusion in the Work
401
+ by You to the Licensor shall be under the terms and conditions of
402
+ this License, without any additional terms or conditions.
403
+ Notwithstanding the above, nothing herein shall supersede or modify
404
+ the terms of any separate license agreement you may have executed
405
+ with Licensor regarding such Contributions.
406
+
407
+ 6. Trademarks. This License does not grant permission to use the trade
408
+ names, trademarks, service marks, or product names of the Licensor,
409
+ except as required for reasonable and customary use in describing the
410
+ origin of the Work and reproducing the content of the NOTICE file.
411
+
412
+ 7. Disclaimer of Warranty. Unless required by applicable law or
413
+ agreed to in writing, Licensor provides the Work (and each
414
+ Contributor provides its Contributions) on an "AS IS" BASIS,
415
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
416
+ implied, including, without limitation, any warranties or conditions
417
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
418
+ PARTICULAR PURPOSE. You are solely responsible for determining the
419
+ appropriateness of using or redistributing the Work and assume any
420
+ risks associated with Your exercise of permissions under this License.
421
+
422
+ 8. Limitation of Liability. In no event and under no legal theory,
423
+ whether in tort (including negligence), contract, or otherwise,
424
+ unless required by applicable law (such as deliberate and grossly
425
+ negligent acts) or agreed to in writing, shall any Contributor be
426
+ liable to You for damages, including any direct, indirect, special,
427
+ incidental, or consequential damages of any character arising as a
428
+ result of this License or out of the use or inability to use the
429
+ Work (including but not limited to damages for loss of goodwill,
430
+ work stoppage, computer failure or malfunction, or any and all
431
+ other commercial damages or losses), even if such Contributor
432
+ has been advised of the possibility of such damages.
433
+
434
+ 9. Accepting Warranty or Additional Liability. While redistributing
435
+ the Work or Derivative Works thereof, You may choose to offer,
436
+ and charge a fee for, acceptance of support, warranty, indemnity,
437
+ or other liability obligations and/or rights consistent with this
438
+ License. However, in accepting such obligations, You may act only
439
+ on Your own behalf and on Your sole responsibility, not on behalf
440
+ of any other Contributor, and only if You agree to indemnify,
441
+ defend, and hold each Contributor harmless for any liability
442
+ incurred by, or claims asserted against, such Contributor by reason
443
+ of your accepting any such warranty or additional liability.
444
+
445
+ END OF TERMS AND CONDITIONS
446
+
447
+ APPENDIX: How to apply the Apache License to your work.
448
+
449
+ To apply the Apache License to your work, attach the following
450
+ boilerplate notice, with the fields enclosed by brackets "[]"
451
+ replaced with your own identifying information. (Don't include
452
+ the brackets!) The text should be enclosed in the appropriate
453
+ comment syntax for the file format. We also recommend that a
454
+ file or class name and description of purpose be included on the
455
+ same "printed page" as the copyright notice for easier
456
+ identification within third-party archives.
457
+
458
+ Copyright [yyyy] [name of copyright owner]
459
+
460
+ Licensed under the Apache License, Version 2.0 (the "License");
461
+ you may not use this file except in compliance with the License.
462
+ You may obtain a copy of the License at
463
+
464
+ http://www.apache.org/licenses/LICENSE-2.0
465
+
466
+ Unless required by applicable law or agreed to in writing, software
467
+ distributed under the License is distributed on an "AS IS" BASIS,
468
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
469
+ See the License for the specific language governing permissions and
470
+ limitations under the License.
VADER-VideoCrafter/configs/inference_i2v_512_v1.0.yaml ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ target: lvdm.models.ddpm3d.LatentVisualDiffusion
3
+ params:
4
+ linear_start: 0.00085
5
+ linear_end: 0.012
6
+ num_timesteps_cond: 1
7
+ timesteps: 1000
8
+ first_stage_key: video
9
+ cond_stage_key: caption
10
+ cond_stage_trainable: false
11
+ conditioning_key: crossattn
12
+ image_size:
13
+ - 40
14
+ - 64
15
+ channels: 4
16
+ scale_by_std: false
17
+ scale_factor: 0.18215
18
+ use_ema: false
19
+ uncond_type: empty_seq
20
+ use_scale: true
21
+ scale_b: 0.7
22
+ finegrained: true
23
+ unet_config:
24
+ target: lvdm.modules.networks.openaimodel3d.UNetModel
25
+ params:
26
+ in_channels: 4
27
+ out_channels: 4
28
+ model_channels: 320
29
+ attention_resolutions:
30
+ - 4
31
+ - 2
32
+ - 1
33
+ num_res_blocks: 2
34
+ channel_mult:
35
+ - 1
36
+ - 2
37
+ - 4
38
+ - 4
39
+ num_head_channels: 64
40
+ transformer_depth: 1
41
+ context_dim: 1024
42
+ use_linear: true
43
+ use_checkpoint: true
44
+ temporal_conv: true
45
+ temporal_attention: true
46
+ temporal_selfatt_only: true
47
+ use_relative_position: false
48
+ use_causal_attention: false
49
+ use_image_attention: true
50
+ temporal_length: 16
51
+ addition_attention: true
52
+ fps_cond: true
53
+ first_stage_config:
54
+ target: lvdm.models.autoencoder.AutoencoderKL
55
+ params:
56
+ embed_dim: 4
57
+ monitor: val/rec_loss
58
+ ddconfig:
59
+ double_z: true
60
+ z_channels: 4
61
+ resolution: 512
62
+ in_channels: 3
63
+ out_ch: 3
64
+ ch: 128
65
+ ch_mult:
66
+ - 1
67
+ - 2
68
+ - 4
69
+ - 4
70
+ num_res_blocks: 2
71
+ attn_resolutions: []
72
+ dropout: 0.0
73
+ lossconfig:
74
+ target: torch.nn.Identity
75
+ cond_stage_config:
76
+ target: lvdm.modules.encoders.condition.FrozenOpenCLIPEmbedder
77
+ params:
78
+ freeze: true
79
+ layer: penultimate
80
+ cond_img_config:
81
+ target: lvdm.modules.encoders.condition.FrozenOpenCLIPImageEmbedderV2
82
+ params:
83
+ freeze: true
VADER-VideoCrafter/configs/inference_t2v_1024_v1.0.yaml ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ target: lvdm.models.ddpm3d.LatentDiffusion
3
+ params:
4
+ linear_start: 0.00085
5
+ linear_end: 0.012
6
+ num_timesteps_cond: 1
7
+ timesteps: 1000
8
+ first_stage_key: video
9
+ cond_stage_key: caption
10
+ cond_stage_trainable: false
11
+ conditioning_key: crossattn
12
+ image_size:
13
+ - 72
14
+ - 128
15
+ channels: 4
16
+ scale_by_std: false
17
+ scale_factor: 0.18215
18
+ use_ema: false
19
+ uncond_type: empty_seq
20
+ use_scale: true
21
+ fix_scale_bug: true
22
+ unet_config:
23
+ target: lvdm.modules.networks.openaimodel3d.UNetModel
24
+ params:
25
+ in_channels: 4
26
+ out_channels: 4
27
+ model_channels: 320
28
+ attention_resolutions:
29
+ - 4
30
+ - 2
31
+ - 1
32
+ num_res_blocks: 2
33
+ channel_mult:
34
+ - 1
35
+ - 2
36
+ - 4
37
+ - 4
38
+ num_head_channels: 64
39
+ transformer_depth: 1
40
+ context_dim: 1024
41
+ use_linear: true
42
+ use_checkpoint: true
43
+ temporal_conv: false
44
+ temporal_attention: true
45
+ temporal_selfatt_only: true
46
+ use_relative_position: true
47
+ use_causal_attention: false
48
+ temporal_length: 16
49
+ addition_attention: true
50
+ fps_cond: true
51
+ first_stage_config:
52
+ target: lvdm.models.autoencoder.AutoencoderKL
53
+ params:
54
+ embed_dim: 4
55
+ monitor: val/rec_loss
56
+ ddconfig:
57
+ double_z: true
58
+ z_channels: 4
59
+ resolution: 512
60
+ in_channels: 3
61
+ out_ch: 3
62
+ ch: 128
63
+ ch_mult:
64
+ - 1
65
+ - 2
66
+ - 4
67
+ - 4
68
+ num_res_blocks: 2
69
+ attn_resolutions: []
70
+ dropout: 0.0
71
+ lossconfig:
72
+ target: torch.nn.Identity
73
+ cond_stage_config:
74
+ target: lvdm.modules.encoders.condition.FrozenOpenCLIPEmbedder
75
+ params:
76
+ freeze: true
77
+ layer: penultimate
VADER-VideoCrafter/configs/inference_t2v_512_v1.0.yaml ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ target: lvdm.models.ddpm3d.LatentDiffusion
3
+ params:
4
+ linear_start: 0.00085
5
+ linear_end: 0.012
6
+ num_timesteps_cond: 1
7
+ timesteps: 1000
8
+ first_stage_key: video
9
+ cond_stage_key: caption
10
+ cond_stage_trainable: false
11
+ conditioning_key: crossattn
12
+ image_size:
13
+ - 40
14
+ - 64
15
+ channels: 4
16
+ scale_by_std: false
17
+ scale_factor: 0.18215
18
+ use_ema: false
19
+ uncond_type: empty_seq
20
+ unet_config:
21
+ target: lvdm.modules.networks.openaimodel3d.UNetModel
22
+ params:
23
+ in_channels: 4
24
+ out_channels: 4
25
+ model_channels: 320
26
+ attention_resolutions:
27
+ - 4
28
+ - 2
29
+ - 1
30
+ num_res_blocks: 2
31
+ channel_mult:
32
+ - 1
33
+ - 2
34
+ - 4
35
+ - 4
36
+ num_head_channels: 64
37
+ transformer_depth: 1
38
+ context_dim: 1024
39
+ use_linear: true
40
+ use_checkpoint: true
41
+ temporal_conv: false
42
+ temporal_attention: true
43
+ temporal_selfatt_only: true
44
+ use_relative_position: true
45
+ use_causal_attention: false
46
+ temporal_length: 16
47
+ addition_attention: true
48
+ first_stage_config:
49
+ target: lvdm.models.autoencoder.AutoencoderKL
50
+ params:
51
+ embed_dim: 4
52
+ monitor: val/rec_loss
53
+ ddconfig:
54
+ double_z: true
55
+ z_channels: 4
56
+ resolution: 512
57
+ in_channels: 3
58
+ out_ch: 3
59
+ ch: 128
60
+ ch_mult:
61
+ - 1
62
+ - 2
63
+ - 4
64
+ - 4
65
+ num_res_blocks: 2
66
+ attn_resolutions: []
67
+ dropout: 0.0
68
+ lossconfig:
69
+ target: torch.nn.Identity
70
+ cond_stage_config:
71
+ target: lvdm.modules.encoders.condition.FrozenOpenCLIPEmbedder
72
+ params:
73
+ freeze: true
74
+ layer: penultimate
VADER-VideoCrafter/configs/inference_t2v_512_v2.0.yaml ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ target: lvdm.models.ddpm3d.LatentDiffusion
3
+ params:
4
+ linear_start: 0.00085
5
+ linear_end: 0.012
6
+ num_timesteps_cond: 1
7
+ timesteps: 1000
8
+ first_stage_key: video
9
+ cond_stage_key: caption
10
+ cond_stage_trainable: false
11
+ conditioning_key: crossattn
12
+ image_size:
13
+ - 40
14
+ - 64
15
+ channels: 4
16
+ scale_by_std: false
17
+ scale_factor: 0.18215
18
+ use_ema: false
19
+ uncond_type: empty_seq
20
+ use_scale: true
21
+ scale_b: 0.7
22
+ unet_config:
23
+ target: lvdm.modules.networks.openaimodel3d.UNetModel
24
+ params:
25
+ in_channels: 4
26
+ out_channels: 4
27
+ model_channels: 320
28
+ attention_resolutions:
29
+ - 4
30
+ - 2
31
+ - 1
32
+ num_res_blocks: 2
33
+ channel_mult:
34
+ - 1
35
+ - 2
36
+ - 4
37
+ - 4
38
+ num_head_channels: 64
39
+ transformer_depth: 1
40
+ context_dim: 1024
41
+ use_linear: true
42
+ use_checkpoint: true
43
+ temporal_conv: true
44
+ temporal_attention: true
45
+ temporal_selfatt_only: true
46
+ use_relative_position: false
47
+ use_causal_attention: false
48
+ temporal_length: 16
49
+ addition_attention: true
50
+ fps_cond: true
51
+ first_stage_config:
52
+ target: lvdm.models.autoencoder.AutoencoderKL
53
+ params:
54
+ embed_dim: 4
55
+ monitor: val/rec_loss
56
+ ddconfig:
57
+ double_z: true
58
+ z_channels: 4
59
+ resolution: 512
60
+ in_channels: 3
61
+ out_ch: 3
62
+ ch: 128
63
+ ch_mult:
64
+ - 1
65
+ - 2
66
+ - 4
67
+ - 4
68
+ num_res_blocks: 2
69
+ attn_resolutions: []
70
+ dropout: 0.0
71
+ lossconfig:
72
+ target: torch.nn.Identity
73
+ cond_stage_config:
74
+ target: lvdm.modules.encoders.condition.FrozenOpenCLIPEmbedder
75
+ params:
76
+ freeze: true
77
+ layer: penultimate
VADER-VideoCrafter/lvdm/basics.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # adopted from
2
+ # https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
3
+ # and
4
+ # https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
5
+ # and
6
+ # https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
7
+ #
8
+ # thanks!
9
+
10
+ import torch.nn as nn
11
+ from utils.utils import instantiate_from_config
12
+
13
+
14
+ def disabled_train(self, mode=True):
15
+ """Overwrite model.train with this function to make sure train/eval mode
16
+ does not change anymore."""
17
+ return self
18
+
19
+ def zero_module(module):
20
+ """
21
+ Zero out the parameters of a module and return it.
22
+ """
23
+ for p in module.parameters():
24
+ p.detach().zero_()
25
+ return module
26
+
27
+ def scale_module(module, scale):
28
+ """
29
+ Scale the parameters of a module and return it.
30
+ """
31
+ for p in module.parameters():
32
+ p.detach().mul_(scale)
33
+ return module
34
+
35
+
36
+ def conv_nd(dims, *args, **kwargs):
37
+ """
38
+ Create a 1D, 2D, or 3D convolution module.
39
+ """
40
+ if dims == 1:
41
+ return nn.Conv1d(*args, **kwargs)
42
+ elif dims == 2:
43
+ return nn.Conv2d(*args, **kwargs)
44
+ elif dims == 3:
45
+ return nn.Conv3d(*args, **kwargs)
46
+ raise ValueError(f"unsupported dimensions: {dims}")
47
+
48
+
49
+ def linear(*args, **kwargs):
50
+ """
51
+ Create a linear module.
52
+ """
53
+ return nn.Linear(*args, **kwargs)
54
+
55
+
56
+ def avg_pool_nd(dims, *args, **kwargs):
57
+ """
58
+ Create a 1D, 2D, or 3D average pooling module.
59
+ """
60
+ if dims == 1:
61
+ return nn.AvgPool1d(*args, **kwargs)
62
+ elif dims == 2:
63
+ return nn.AvgPool2d(*args, **kwargs)
64
+ elif dims == 3:
65
+ return nn.AvgPool3d(*args, **kwargs)
66
+ raise ValueError(f"unsupported dimensions: {dims}")
67
+
68
+
69
+ def nonlinearity(type='silu'):
70
+ if type == 'silu':
71
+ return nn.SiLU()
72
+ elif type == 'leaky_relu':
73
+ return nn.LeakyReLU()
74
+
75
+
76
+ class GroupNormSpecific(nn.GroupNorm):
77
+ def forward(self, x):
78
+ return super().forward(x.float()).type(x.dtype)
79
+
80
+
81
+ def normalization(channels, num_groups=32):
82
+ """
83
+ Make a standard normalization layer.
84
+ :param channels: number of input channels.
85
+ :return: an nn.Module for normalization.
86
+ """
87
+ return GroupNormSpecific(num_groups, channels)
88
+
89
+
90
+ class HybridConditioner(nn.Module):
91
+
92
+ def __init__(self, c_concat_config, c_crossattn_config):
93
+ super().__init__()
94
+ self.concat_conditioner = instantiate_from_config(c_concat_config)
95
+ self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
96
+
97
+ def forward(self, c_concat, c_crossattn):
98
+ c_concat = self.concat_conditioner(c_concat)
99
+ c_crossattn = self.crossattn_conditioner(c_crossattn)
100
+ return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
VADER-VideoCrafter/lvdm/common.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copied from VideoCrafter: https://github.com/AILab-CVC/VideoCrafter
2
+ import math
3
+ from inspect import isfunction
4
+ import torch
5
+ from torch import nn
6
+ import torch.distributed as dist
7
+
8
+
9
+ def gather_data(data, return_np=True):
10
+ ''' gather data from multiple processes to one list '''
11
+ data_list = [torch.zeros_like(data) for _ in range(dist.get_world_size())]
12
+ dist.all_gather(data_list, data) # gather not supported with NCCL
13
+ if return_np:
14
+ data_list = [data.cpu().numpy() for data in data_list]
15
+ return data_list
16
+
17
+ def autocast(f):
18
+ def do_autocast(*args, **kwargs):
19
+ with torch.cuda.amp.autocast(enabled=True,
20
+ dtype=torch.get_autocast_gpu_dtype(),
21
+ cache_enabled=torch.is_autocast_cache_enabled()):
22
+ return f(*args, **kwargs)
23
+ return do_autocast
24
+
25
+
26
+ def extract_into_tensor(a, t, x_shape):
27
+ b, *_ = t.shape
28
+ out = a.gather(-1, t)
29
+ return out.reshape(b, *((1,) * (len(x_shape) - 1)))
30
+
31
+
32
+ def noise_like(shape, device, repeat=False):
33
+ repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
34
+ noise = lambda: torch.randn(shape, device=device)
35
+ return repeat_noise() if repeat else noise()
36
+
37
+
38
+ def default(val, d):
39
+ if exists(val):
40
+ return val
41
+ return d() if isfunction(d) else d
42
+
43
+ def exists(val):
44
+ return val is not None
45
+
46
+ def identity(*args, **kwargs):
47
+ return nn.Identity()
48
+
49
+ def uniq(arr):
50
+ return{el: True for el in arr}.keys()
51
+
52
+ def mean_flat(tensor):
53
+ """
54
+ Take the mean over all non-batch dimensions.
55
+ """
56
+ return tensor.mean(dim=list(range(1, len(tensor.shape))))
57
+
58
+ def ismap(x):
59
+ if not isinstance(x, torch.Tensor):
60
+ return False
61
+ return (len(x.shape) == 4) and (x.shape[1] > 3)
62
+
63
+ def isimage(x):
64
+ if not isinstance(x,torch.Tensor):
65
+ return False
66
+ return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)
67
+
68
+ def max_neg_value(t):
69
+ return -torch.finfo(t.dtype).max
70
+
71
+ def shape_to_str(x):
72
+ shape_str = "x".join([str(x) for x in x.shape])
73
+ return shape_str
74
+
75
+ def init_(tensor):
76
+ dim = tensor.shape[-1]
77
+ std = 1 / math.sqrt(dim)
78
+ tensor.uniform_(-std, std)
79
+ return tensor
80
+
81
+ ckpt = torch.utils.checkpoint.checkpoint
82
+ def checkpoint(func, inputs, params, flag):
83
+ """
84
+ Evaluate a function without caching intermediate activations, allowing for
85
+ reduced memory at the expense of extra compute in the backward pass.
86
+ :param func: the function to evaluate.
87
+ :param inputs: the argument sequence to pass to `func`.
88
+ :param params: a sequence of parameters `func` depends on but does not
89
+ explicitly take as arguments.
90
+ :param flag: if False, disable gradient checkpointing.
91
+ """
92
+ if flag:
93
+ return ckpt(func, *inputs, use_reentrant=False)
94
+ else:
95
+ return func(*inputs)
96
+
VADER-VideoCrafter/lvdm/distributions.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copied from VideoCrafter: https://github.com/AILab-CVC/VideoCrafter
2
+ import torch
3
+ import numpy as np
4
+
5
+
6
+ class AbstractDistribution:
7
+ def sample(self):
8
+ raise NotImplementedError()
9
+
10
+ def mode(self):
11
+ raise NotImplementedError()
12
+
13
+
14
+ class DiracDistribution(AbstractDistribution):
15
+ def __init__(self, value):
16
+ self.value = value
17
+
18
+ def sample(self):
19
+ return self.value
20
+
21
+ def mode(self):
22
+ return self.value
23
+
24
+
25
+ class DiagonalGaussianDistribution(object):
26
+ def __init__(self, parameters, deterministic=False):
27
+ self.parameters = parameters
28
+ self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
29
+ self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
30
+ self.deterministic = deterministic
31
+ self.std = torch.exp(0.5 * self.logvar)
32
+ self.var = torch.exp(self.logvar)
33
+ if self.deterministic:
34
+ self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
35
+
36
+ def sample(self, noise=None):
37
+ if noise is None:
38
+ noise = torch.randn(self.mean.shape)
39
+
40
+ x = self.mean + self.std * noise.to(device=self.parameters.device)
41
+ return x
42
+
43
+ def kl(self, other=None):
44
+ if self.deterministic:
45
+ return torch.Tensor([0.])
46
+ else:
47
+ if other is None:
48
+ return 0.5 * torch.sum(torch.pow(self.mean, 2)
49
+ + self.var - 1.0 - self.logvar,
50
+ dim=[1, 2, 3])
51
+ else:
52
+ return 0.5 * torch.sum(
53
+ torch.pow(self.mean - other.mean, 2) / other.var
54
+ + self.var / other.var - 1.0 - self.logvar + other.logvar,
55
+ dim=[1, 2, 3])
56
+
57
+ def nll(self, sample, dims=[1,2,3]):
58
+ if self.deterministic:
59
+ return torch.Tensor([0.])
60
+ logtwopi = np.log(2.0 * np.pi)
61
+ return 0.5 * torch.sum(
62
+ logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
63
+ dim=dims)
64
+
65
+ def mode(self):
66
+ return self.mean
67
+
68
+
69
+ def normal_kl(mean1, logvar1, mean2, logvar2):
70
+ """
71
+ source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
72
+ Compute the KL divergence between two gaussians.
73
+ Shapes are automatically broadcasted, so batches can be compared to
74
+ scalars, among other use cases.
75
+ """
76
+ tensor = None
77
+ for obj in (mean1, logvar1, mean2, logvar2):
78
+ if isinstance(obj, torch.Tensor):
79
+ tensor = obj
80
+ break
81
+ assert tensor is not None, "at least one argument must be a Tensor"
82
+
83
+ # Force variances to be Tensors. Broadcasting helps convert scalars to
84
+ # Tensors, but it does not work for torch.exp().
85
+ logvar1, logvar2 = [
86
+ x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
87
+ for x in (logvar1, logvar2)
88
+ ]
89
+
90
+ return 0.5 * (
91
+ -1.0
92
+ + logvar2
93
+ - logvar1
94
+ + torch.exp(logvar1 - logvar2)
95
+ + ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
96
+ )
VADER-VideoCrafter/lvdm/ema.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copied from VideoCrafter: https://github.com/AILab-CVC/VideoCrafter
2
+ import torch
3
+ from torch import nn
4
+
5
+
6
+ class LitEma(nn.Module):
7
+ def __init__(self, model, decay=0.9999, use_num_upates=True):
8
+ super().__init__()
9
+ if decay < 0.0 or decay > 1.0:
10
+ raise ValueError('Decay must be between 0 and 1')
11
+
12
+ self.m_name2s_name = {}
13
+ self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32))
14
+ self.register_buffer('num_updates', torch.tensor(0,dtype=torch.int) if use_num_upates
15
+ else torch.tensor(-1,dtype=torch.int))
16
+
17
+ for name, p in model.named_parameters():
18
+ if p.requires_grad:
19
+ #remove as '.'-character is not allowed in buffers
20
+ s_name = name.replace('.','')
21
+ self.m_name2s_name.update({name:s_name})
22
+ self.register_buffer(s_name,p.clone().detach().data)
23
+
24
+ self.collected_params = []
25
+
26
+ def forward(self,model):
27
+ decay = self.decay
28
+
29
+ if self.num_updates >= 0:
30
+ self.num_updates += 1
31
+ decay = min(self.decay,(1 + self.num_updates) / (10 + self.num_updates))
32
+
33
+ one_minus_decay = 1.0 - decay
34
+
35
+ with torch.no_grad():
36
+ m_param = dict(model.named_parameters())
37
+ shadow_params = dict(self.named_buffers())
38
+
39
+ for key in m_param:
40
+ if m_param[key].requires_grad:
41
+ sname = self.m_name2s_name[key]
42
+ shadow_params[sname] = shadow_params[sname].type_as(m_param[key])
43
+ shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key]))
44
+ else:
45
+ assert not key in self.m_name2s_name
46
+
47
+ def copy_to(self, model):
48
+ m_param = dict(model.named_parameters())
49
+ shadow_params = dict(self.named_buffers())
50
+ for key in m_param:
51
+ if m_param[key].requires_grad:
52
+ m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data)
53
+ else:
54
+ assert not key in self.m_name2s_name
55
+
56
+ def store(self, parameters):
57
+ """
58
+ Save the current parameters for restoring later.
59
+ Args:
60
+ parameters: Iterable of `torch.nn.Parameter`; the parameters to be
61
+ temporarily stored.
62
+ """
63
+ self.collected_params = [param.clone() for param in parameters]
64
+
65
+ def restore(self, parameters):
66
+ """
67
+ Restore the parameters stored with the `store` method.
68
+ Useful to validate the model with EMA parameters without affecting the
69
+ original optimization process. Store the parameters before the
70
+ `copy_to` method. After validation (or model saving), use this to
71
+ restore the former parameters.
72
+ Args:
73
+ parameters: Iterable of `torch.nn.Parameter`; the parameters to be
74
+ updated with the stored parameters.
75
+ """
76
+ for c_param, param in zip(self.collected_params, parameters):
77
+ param.data.copy_(c_param.data)
VADER-VideoCrafter/lvdm/models/autoencoder.py ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copied from VideoCrafter: https://github.com/AILab-CVC/VideoCrafter
2
+ import os
3
+ from contextlib import contextmanager
4
+ import torch
5
+ import numpy as np
6
+ from einops import rearrange
7
+ import torch.nn.functional as F
8
+ import pytorch_lightning as pl
9
+ from lvdm.modules.networks.ae_modules import Encoder, Decoder
10
+ from lvdm.distributions import DiagonalGaussianDistribution
11
+ from utils.utils import instantiate_from_config
12
+
13
+
14
+ class AutoencoderKL(pl.LightningModule):
15
+ def __init__(self,
16
+ ddconfig,
17
+ lossconfig,
18
+ embed_dim,
19
+ ckpt_path=None,
20
+ ignore_keys=[],
21
+ image_key="image",
22
+ colorize_nlabels=None,
23
+ monitor=None,
24
+ test=False,
25
+ logdir=None,
26
+ input_dim=4,
27
+ test_args=None,
28
+ ):
29
+ super().__init__()
30
+ self.image_key = image_key
31
+ self.encoder = Encoder(**ddconfig)
32
+ self.decoder = Decoder(**ddconfig)
33
+ self.loss = instantiate_from_config(lossconfig)
34
+ assert ddconfig["double_z"]
35
+ self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
36
+ self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
37
+ self.embed_dim = embed_dim
38
+ self.input_dim = input_dim
39
+ self.test = test
40
+ self.test_args = test_args
41
+ self.logdir = logdir
42
+ if colorize_nlabels is not None:
43
+ assert type(colorize_nlabels)==int
44
+ self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
45
+ if monitor is not None:
46
+ self.monitor = monitor
47
+ if ckpt_path is not None:
48
+ self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
49
+ if self.test:
50
+ self.init_test()
51
+
52
+ def init_test(self,):
53
+ self.test = True
54
+ save_dir = os.path.join(self.logdir, "test")
55
+ if 'ckpt' in self.test_args:
56
+ ckpt_name = os.path.basename(self.test_args.ckpt).split('.ckpt')[0] + f'_epoch{self._cur_epoch}'
57
+ self.root = os.path.join(save_dir, ckpt_name)
58
+ else:
59
+ self.root = save_dir
60
+ if 'test_subdir' in self.test_args:
61
+ self.root = os.path.join(save_dir, self.test_args.test_subdir)
62
+
63
+ self.root_zs = os.path.join(self.root, "zs")
64
+ self.root_dec = os.path.join(self.root, "reconstructions")
65
+ self.root_inputs = os.path.join(self.root, "inputs")
66
+ os.makedirs(self.root, exist_ok=True)
67
+
68
+ if self.test_args.save_z:
69
+ os.makedirs(self.root_zs, exist_ok=True)
70
+ if self.test_args.save_reconstruction:
71
+ os.makedirs(self.root_dec, exist_ok=True)
72
+ if self.test_args.save_input:
73
+ os.makedirs(self.root_inputs, exist_ok=True)
74
+ assert(self.test_args is not None)
75
+ self.test_maximum = getattr(self.test_args, 'test_maximum', None)
76
+ self.count = 0
77
+ self.eval_metrics = {}
78
+ self.decodes = []
79
+ self.save_decode_samples = 2048
80
+
81
+ def init_from_ckpt(self, path, ignore_keys=list()):
82
+ sd = torch.load(path, map_location="cpu")
83
+ try:
84
+ self._cur_epoch = sd['epoch']
85
+ sd = sd["state_dict"]
86
+ except:
87
+ self._cur_epoch = 'null'
88
+ keys = list(sd.keys())
89
+ for k in keys:
90
+ for ik in ignore_keys:
91
+ if k.startswith(ik):
92
+ print("Deleting key {} from state_dict.".format(k))
93
+ del sd[k]
94
+ self.load_state_dict(sd, strict=False)
95
+ # self.load_state_dict(sd, strict=True)
96
+ print(f"Restored from {path}")
97
+
98
+ def encode(self, x, **kwargs):
99
+
100
+ h = self.encoder(x)
101
+ moments = self.quant_conv(h)
102
+ posterior = DiagonalGaussianDistribution(moments)
103
+ return posterior
104
+
105
+ def decode(self, z, **kwargs):
106
+ z = self.post_quant_conv(z)
107
+ dec = self.decoder(z)
108
+ return dec
109
+
110
+ def forward(self, input, sample_posterior=True):
111
+ posterior = self.encode(input)
112
+ if sample_posterior:
113
+ z = posterior.sample()
114
+ else:
115
+ z = posterior.mode()
116
+ dec = self.decode(z)
117
+ return dec, posterior
118
+
119
+ def get_input(self, batch, k):
120
+ x = batch[k]
121
+ if x.dim() == 5 and self.input_dim == 4:
122
+ b,c,t,h,w = x.shape
123
+ self.b = b
124
+ self.t = t
125
+ x = rearrange(x, 'b c t h w -> (b t) c h w')
126
+
127
+ return x
128
+
129
+ def training_step(self, batch, batch_idx, optimizer_idx):
130
+ inputs = self.get_input(batch, self.image_key)
131
+ reconstructions, posterior = self(inputs)
132
+
133
+ if optimizer_idx == 0:
134
+ # train encoder+decoder+logvar
135
+ aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
136
+ last_layer=self.get_last_layer(), split="train")
137
+ self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
138
+ self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
139
+ return aeloss
140
+
141
+ if optimizer_idx == 1:
142
+ # train the discriminator
143
+ discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
144
+ last_layer=self.get_last_layer(), split="train")
145
+
146
+ self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
147
+ self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
148
+ return discloss
149
+
150
+ def validation_step(self, batch, batch_idx):
151
+ inputs = self.get_input(batch, self.image_key)
152
+ reconstructions, posterior = self(inputs)
153
+ aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
154
+ last_layer=self.get_last_layer(), split="val")
155
+
156
+ discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
157
+ last_layer=self.get_last_layer(), split="val")
158
+
159
+ self.log("val/rec_loss", log_dict_ae["val/rec_loss"])
160
+ self.log_dict(log_dict_ae)
161
+ self.log_dict(log_dict_disc)
162
+ return self.log_dict
163
+
164
+ def configure_optimizers(self):
165
+ lr = self.learning_rate
166
+ opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
167
+ list(self.decoder.parameters())+
168
+ list(self.quant_conv.parameters())+
169
+ list(self.post_quant_conv.parameters()),
170
+ lr=lr, betas=(0.5, 0.9))
171
+ opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
172
+ lr=lr, betas=(0.5, 0.9))
173
+ return [opt_ae, opt_disc], []
174
+
175
+ def get_last_layer(self):
176
+ return self.decoder.conv_out.weight
177
+
178
+ @torch.no_grad()
179
+ def log_images(self, batch, only_inputs=False, **kwargs):
180
+ log = dict()
181
+ x = self.get_input(batch, self.image_key)
182
+ x = x.to(self.device)
183
+ if not only_inputs:
184
+ xrec, posterior = self(x)
185
+ if x.shape[1] > 3:
186
+ # colorize with random projection
187
+ assert xrec.shape[1] > 3
188
+ x = self.to_rgb(x)
189
+ xrec = self.to_rgb(xrec)
190
+ log["samples"] = self.decode(torch.randn_like(posterior.sample()))
191
+ log["reconstructions"] = xrec
192
+ log["inputs"] = x
193
+ return log
194
+
195
+ def to_rgb(self, x):
196
+ assert self.image_key == "segmentation"
197
+ if not hasattr(self, "colorize"):
198
+ self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
199
+ x = F.conv2d(x, weight=self.colorize)
200
+ x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
201
+ return x
202
+
203
+ class IdentityFirstStage(torch.nn.Module):
204
+ def __init__(self, *args, vq_interface=False, **kwargs):
205
+ self.vq_interface = vq_interface # TODO: Should be true by default but check to not break older stuff
206
+ super().__init__()
207
+
208
+ def encode(self, x, *args, **kwargs):
209
+ return x
210
+
211
+ def decode(self, x, *args, **kwargs):
212
+ return x
213
+
214
+ def quantize(self, x, *args, **kwargs):
215
+ if self.vq_interface:
216
+ return x, None, [None, None, None]
217
+ return x
218
+
219
+ def forward(self, x, *args, **kwargs):
220
+ return x
VADER-VideoCrafter/lvdm/models/ddpm3d.py ADDED
@@ -0,0 +1,765 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copied from VideoCrafter: https://github.com/AILab-CVC/VideoCrafter
2
+ """
3
+ wild mixture of
4
+ https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
5
+ https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
6
+ https://github.com/CompVis/taming-transformers
7
+ -- merci
8
+ """
9
+
10
+ from functools import partial
11
+ from contextlib import contextmanager
12
+ import numpy as np
13
+ from tqdm import tqdm
14
+ from einops import rearrange, repeat
15
+ import logging
16
+ mainlogger = logging.getLogger('mainlogger')
17
+ import torch
18
+ import torch.nn as nn
19
+ from torchvision.utils import make_grid
20
+ import pytorch_lightning as pl
21
+ from utils.utils import instantiate_from_config
22
+ from lvdm.ema import LitEma
23
+ from lvdm.distributions import DiagonalGaussianDistribution
24
+ from lvdm.models.utils_diffusion import make_beta_schedule
25
+ from lvdm.modules.encoders.ip_resampler import ImageProjModel, Resampler
26
+ from lvdm.basics import disabled_train
27
+ from lvdm.common import (
28
+ extract_into_tensor,
29
+ noise_like,
30
+ exists,
31
+ default
32
+ )
33
+ # import ipdb
34
+ # st = ipdb.set_trace
35
+
36
+ __conditioning_keys__ = {'concat': 'c_concat',
37
+ 'crossattn': 'c_crossattn',
38
+ 'adm': 'y'}
39
+
40
+ class DDPM(pl.LightningModule):
41
+ # classic DDPM with Gaussian diffusion, in image space
42
+ def __init__(self,
43
+ unet_config,
44
+ timesteps=1000,
45
+ beta_schedule="linear",
46
+ loss_type="l2",
47
+ ckpt_path=None,
48
+ ignore_keys=[],
49
+ load_only_unet=False,
50
+ monitor=None,
51
+ use_ema=True,
52
+ first_stage_key="image",
53
+ image_size=256,
54
+ channels=3,
55
+ log_every_t=100,
56
+ clip_denoised=True,
57
+ linear_start=1e-4,
58
+ linear_end=2e-2,
59
+ cosine_s=8e-3,
60
+ given_betas=None,
61
+ original_elbo_weight=0.,
62
+ v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
63
+ l_simple_weight=1.,
64
+ conditioning_key=None,
65
+ parameterization="eps", # all assuming fixed variance schedules
66
+ scheduler_config=None,
67
+ use_positional_encodings=False,
68
+ learn_logvar=False,
69
+ logvar_init=0.
70
+ ):
71
+ super().__init__()
72
+ assert parameterization in ["eps", "x0"], 'currently only supporting "eps" and "x0"'
73
+ self.parameterization = parameterization
74
+ mainlogger.info(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
75
+ self.cond_stage_model = None
76
+ self.clip_denoised = clip_denoised
77
+ self.log_every_t = log_every_t
78
+ self.first_stage_key = first_stage_key
79
+ self.channels = channels
80
+ self.temporal_length = unet_config.params.temporal_length
81
+ self.image_size = image_size
82
+ if isinstance(self.image_size, int):
83
+ self.image_size = [self.image_size, self.image_size]
84
+ self.use_positional_encodings = use_positional_encodings
85
+ self.model = DiffusionWrapper(unet_config, conditioning_key)
86
+ self.use_ema = use_ema
87
+ if self.use_ema:
88
+ self.model_ema = LitEma(self.model)
89
+ mainlogger.info(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
90
+
91
+ self.use_scheduler = scheduler_config is not None
92
+ if self.use_scheduler:
93
+ self.scheduler_config = scheduler_config
94
+
95
+ self.v_posterior = v_posterior
96
+ self.original_elbo_weight = original_elbo_weight
97
+ self.l_simple_weight = l_simple_weight
98
+
99
+ if monitor is not None:
100
+ self.monitor = monitor
101
+ if ckpt_path is not None:
102
+ self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)
103
+
104
+ self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
105
+ linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
106
+
107
+ self.loss_type = loss_type
108
+
109
+ self.learn_logvar = learn_logvar
110
+ self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
111
+ if self.learn_logvar:
112
+ self.logvar = nn.Parameter(self.logvar, requires_grad=True)
113
+
114
+
115
+ def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
116
+ linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
117
+ if exists(given_betas):
118
+ betas = given_betas
119
+ else:
120
+ betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
121
+ cosine_s=cosine_s)
122
+ alphas = 1. - betas
123
+ alphas_cumprod = np.cumprod(alphas, axis=0)
124
+ alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
125
+
126
+ timesteps, = betas.shape
127
+ self.num_timesteps = int(timesteps)
128
+ self.linear_start = linear_start
129
+ self.linear_end = linear_end
130
+ assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
131
+
132
+ to_torch = partial(torch.tensor, dtype=torch.float32)
133
+
134
+ self.register_buffer('betas', to_torch(betas))
135
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
136
+ self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
137
+
138
+ # calculations for diffusion q(x_t | x_{t-1}) and others
139
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
140
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
141
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
142
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
143
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
144
+
145
+ # calculations for posterior q(x_{t-1} | x_t, x_0)
146
+ posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (
147
+ 1. - alphas_cumprod) + self.v_posterior * betas
148
+ # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
149
+ self.register_buffer('posterior_variance', to_torch(posterior_variance))
150
+ # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
151
+ self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
152
+ self.register_buffer('posterior_mean_coef1', to_torch(
153
+ betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
154
+ self.register_buffer('posterior_mean_coef2', to_torch(
155
+ (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
156
+
157
+ if self.parameterization == "eps":
158
+ lvlb_weights = self.betas ** 2 / (
159
+ 2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))
160
+ elif self.parameterization == "x0":
161
+ lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
162
+ else:
163
+ raise NotImplementedError("mu not supported")
164
+ # TODO how to choose this term
165
+ lvlb_weights[0] = lvlb_weights[1]
166
+ self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
167
+ assert not torch.isnan(self.lvlb_weights).all()
168
+
169
+ @contextmanager
170
+ def ema_scope(self, context=None):
171
+ if self.use_ema:
172
+ self.model_ema.store(self.model.parameters())
173
+ self.model_ema.copy_to(self.model)
174
+ if context is not None:
175
+ mainlogger.info(f"{context}: Switched to EMA weights")
176
+ try:
177
+ yield None
178
+ finally:
179
+ if self.use_ema:
180
+ self.model_ema.restore(self.model.parameters())
181
+ if context is not None:
182
+ mainlogger.info(f"{context}: Restored training weights")
183
+
184
+ def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
185
+ sd = torch.load(path, map_location="cpu")
186
+ if "state_dict" in list(sd.keys()):
187
+ sd = sd["state_dict"]
188
+ keys = list(sd.keys())
189
+ for k in keys:
190
+ for ik in ignore_keys:
191
+ if k.startswith(ik):
192
+ mainlogger.info("Deleting key {} from state_dict.".format(k))
193
+ del sd[k]
194
+ missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
195
+ sd, strict=False)
196
+ mainlogger.info(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
197
+ if len(missing) > 0:
198
+ mainlogger.info(f"Missing Keys: {missing}")
199
+ if len(unexpected) > 0:
200
+ mainlogger.info(f"Unexpected Keys: {unexpected}")
201
+
202
+ def q_mean_variance(self, x_start, t):
203
+ """
204
+ Get the distribution q(x_t | x_0).
205
+ :param x_start: the [N x C x ...] tensor of noiseless inputs.
206
+ :param t: the number of diffusion steps (minus 1). Here, 0 means one step.
207
+ :return: A tuple (mean, variance, log_variance), all of x_start's shape.
208
+ """
209
+ mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start)
210
+ variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
211
+ log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
212
+ return mean, variance, log_variance
213
+
214
+ def predict_start_from_noise(self, x_t, t, noise):
215
+ return (
216
+ extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
217
+ extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
218
+ )
219
+
220
+ def q_posterior(self, x_start, x_t, t):
221
+ posterior_mean = (
222
+ extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
223
+ extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
224
+ )
225
+ posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
226
+ posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
227
+ return posterior_mean, posterior_variance, posterior_log_variance_clipped
228
+
229
+ def p_mean_variance(self, x, t, clip_denoised: bool):
230
+ model_out = self.model(x, t)
231
+ if self.parameterization == "eps":
232
+ x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
233
+ elif self.parameterization == "x0":
234
+ x_recon = model_out
235
+ if clip_denoised:
236
+ x_recon.clamp_(-1., 1.)
237
+
238
+ model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
239
+ return model_mean, posterior_variance, posterior_log_variance
240
+
241
+ @torch.no_grad()
242
+ def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
243
+ b, *_, device = *x.shape, x.device
244
+ model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)
245
+ noise = noise_like(x.shape, device, repeat_noise)
246
+ # no noise when t == 0
247
+ nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
248
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
249
+
250
+ @torch.no_grad()
251
+ def p_sample_loop(self, shape, return_intermediates=False):
252
+ device = self.betas.device
253
+ b = shape[0]
254
+ img = torch.randn(shape, device=device)
255
+ intermediates = [img]
256
+ for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps):
257
+ img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long),
258
+ clip_denoised=self.clip_denoised)
259
+ if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
260
+ intermediates.append(img)
261
+ if return_intermediates:
262
+ return img, intermediates
263
+ return img
264
+
265
+ @torch.no_grad()
266
+ def sample(self, batch_size=16, return_intermediates=False):
267
+ image_size = self.image_size
268
+ channels = self.channels
269
+ return self.p_sample_loop((batch_size, channels, image_size, image_size),
270
+ return_intermediates=return_intermediates)
271
+
272
+ def q_sample(self, x_start, t, noise=None):
273
+ noise = default(noise, lambda: torch.randn_like(x_start))
274
+ return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start *
275
+ extract_into_tensor(self.scale_arr, t, x_start.shape) +
276
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
277
+
278
+ def get_input(self, batch, k):
279
+ x = batch[k]
280
+ x = x.to(memory_format=torch.contiguous_format).float()
281
+ return x
282
+
283
+ def _get_rows_from_list(self, samples):
284
+ n_imgs_per_row = len(samples)
285
+ denoise_grid = rearrange(samples, 'n b c h w -> b n c h w')
286
+ denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
287
+ denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
288
+ return denoise_grid
289
+
290
+ @torch.no_grad()
291
+ def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
292
+ log = dict()
293
+ x = self.get_input(batch, self.first_stage_key)
294
+ N = min(x.shape[0], N)
295
+ n_row = min(x.shape[0], n_row)
296
+ x = x.to(self.device)[:N]
297
+ log["inputs"] = x
298
+
299
+ # get diffusion row
300
+ diffusion_row = list()
301
+ x_start = x[:n_row]
302
+
303
+ for t in range(self.num_timesteps):
304
+ if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
305
+ t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
306
+ t = t.to(self.device).long()
307
+ noise = torch.randn_like(x_start)
308
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
309
+ diffusion_row.append(x_noisy)
310
+
311
+ log["diffusion_row"] = self._get_rows_from_list(diffusion_row)
312
+
313
+ if sample:
314
+ # get denoise row
315
+ with self.ema_scope("Plotting"):
316
+ samples, denoise_row = self.sample(batch_size=N, return_intermediates=True)
317
+
318
+ log["samples"] = samples
319
+ log["denoise_row"] = self._get_rows_from_list(denoise_row)
320
+
321
+ if return_keys:
322
+ if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
323
+ return log
324
+ else:
325
+ return {key: log[key] for key in return_keys}
326
+ return log
327
+
328
+
329
+ class LatentDiffusion(DDPM):
330
+ """main class"""
331
+ def __init__(self,
332
+ first_stage_config,
333
+ cond_stage_config,
334
+ num_timesteps_cond=None,
335
+ cond_stage_key="caption",
336
+ cond_stage_trainable=False,
337
+ cond_stage_forward=None,
338
+ conditioning_key=None,
339
+ uncond_prob=0.2,
340
+ uncond_type="empty_seq",
341
+ scale_factor=1.0,
342
+ scale_by_std=False,
343
+ encoder_type="2d",
344
+ only_model=False,
345
+ use_scale=False,
346
+ scale_a=1,
347
+ scale_b=0.3,
348
+ mid_step=400,
349
+ fix_scale_bug=False,
350
+ *args, **kwargs):
351
+ self.num_timesteps_cond = default(num_timesteps_cond, 1)
352
+ self.scale_by_std = scale_by_std
353
+ assert self.num_timesteps_cond <= kwargs['timesteps']
354
+ # for backwards compatibility after implementation of DiffusionWrapper
355
+ ckpt_path = kwargs.pop("ckpt_path", None)
356
+ ignore_keys = kwargs.pop("ignore_keys", [])
357
+ conditioning_key = default(conditioning_key, 'crossattn')
358
+ super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
359
+
360
+ self.cond_stage_trainable = cond_stage_trainable
361
+ self.cond_stage_key = cond_stage_key
362
+
363
+ # scale factor
364
+ self.use_scale=use_scale
365
+ if self.use_scale:
366
+ self.scale_a=scale_a
367
+ self.scale_b=scale_b
368
+ if fix_scale_bug:
369
+ scale_step=self.num_timesteps-mid_step
370
+ else: #bug
371
+ scale_step = self.num_timesteps
372
+
373
+ scale_arr1 = np.linspace(scale_a, scale_b, mid_step)
374
+ scale_arr2 = np.full(scale_step, scale_b)
375
+ scale_arr = np.concatenate((scale_arr1, scale_arr2))
376
+ scale_arr_prev = np.append(scale_a, scale_arr[:-1])
377
+ to_torch = partial(torch.tensor, dtype=torch.float32)
378
+ self.register_buffer('scale_arr', to_torch(scale_arr))
379
+
380
+ try:
381
+ self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
382
+ except:
383
+ self.num_downs = 0
384
+ if not scale_by_std:
385
+ self.scale_factor = scale_factor
386
+ else:
387
+ self.register_buffer('scale_factor', torch.tensor(scale_factor))
388
+ self.instantiate_first_stage(first_stage_config)
389
+ self.instantiate_cond_stage(cond_stage_config)
390
+ self.first_stage_config = first_stage_config
391
+ self.cond_stage_config = cond_stage_config
392
+ self.clip_denoised = False
393
+
394
+ self.cond_stage_forward = cond_stage_forward
395
+ self.encoder_type = encoder_type
396
+ assert(encoder_type in ["2d", "3d"])
397
+ self.uncond_prob = uncond_prob
398
+ self.classifier_free_guidance = True if uncond_prob > 0 else False
399
+ assert(uncond_type in ["zero_embed", "empty_seq"])
400
+ self.uncond_type = uncond_type
401
+
402
+
403
+ self.restarted_from_ckpt = False
404
+ if ckpt_path is not None:
405
+ self.init_from_ckpt(ckpt_path, ignore_keys, only_model=only_model)
406
+ self.restarted_from_ckpt = True
407
+
408
+
409
+ def make_cond_schedule(self, ):
410
+ self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
411
+ ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
412
+ self.cond_ids[:self.num_timesteps_cond] = ids
413
+
414
+ def q_sample(self, x_start, t, noise=None):
415
+ noise = default(noise, lambda: torch.randn_like(x_start))
416
+ if self.use_scale:
417
+ return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start *
418
+ extract_into_tensor(self.scale_arr, t, x_start.shape) +
419
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
420
+ else:
421
+ return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
422
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
423
+
424
+
425
+ def _freeze_model(self):
426
+ for name, para in self.model.diffusion_model.named_parameters():
427
+ para.requires_grad = False
428
+
429
+ def instantiate_first_stage(self, config):
430
+ model = instantiate_from_config(config)
431
+ self.first_stage_model = model.eval()
432
+ self.first_stage_model.train = disabled_train
433
+ for param in self.first_stage_model.parameters():
434
+ param.requires_grad = False
435
+
436
+ def instantiate_cond_stage(self, config):
437
+ if not self.cond_stage_trainable:
438
+ model = instantiate_from_config(config)
439
+ self.cond_stage_model = model.eval()
440
+ self.cond_stage_model.train = disabled_train
441
+ for param in self.cond_stage_model.parameters():
442
+ param.requires_grad = False
443
+ else:
444
+ model = instantiate_from_config(config)
445
+ self.cond_stage_model = model
446
+
447
+ def get_learned_conditioning(self, c):
448
+ if self.cond_stage_forward is None:
449
+ if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
450
+ c = self.cond_stage_model.encode(c)
451
+ if isinstance(c, DiagonalGaussianDistribution):
452
+ c = c.mode()
453
+ else:
454
+ c = self.cond_stage_model(c)
455
+ else:
456
+ assert hasattr(self.cond_stage_model, self.cond_stage_forward)
457
+ c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
458
+ return c
459
+
460
+ def get_first_stage_encoding(self, encoder_posterior, noise=None):
461
+ if isinstance(encoder_posterior, DiagonalGaussianDistribution):
462
+ z = encoder_posterior.sample(noise=noise)
463
+ elif isinstance(encoder_posterior, torch.Tensor):
464
+ z = encoder_posterior
465
+ else:
466
+ raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
467
+ return self.scale_factor * z
468
+
469
+ @torch.no_grad()
470
+ def encode_first_stage(self, x):
471
+ if self.encoder_type == "2d" and x.dim() == 5:
472
+ b, _, t, _, _ = x.shape
473
+ x = rearrange(x, 'b c t h w -> (b t) c h w')
474
+ reshape_back = True
475
+ else:
476
+ reshape_back = False
477
+
478
+ encoder_posterior = self.first_stage_model.encode(x)
479
+ results = self.get_first_stage_encoding(encoder_posterior).detach()
480
+
481
+ if reshape_back:
482
+ results = rearrange(results, '(b t) c h w -> b c t h w', b=b,t=t)
483
+
484
+ return results
485
+
486
+ @torch.no_grad()
487
+ def encode_first_stage_2DAE(self, x):
488
+
489
+ b, _, t, _, _ = x.shape
490
+ results = torch.cat([self.get_first_stage_encoding(self.first_stage_model.encode(x[:,:,i])).detach().unsqueeze(2) for i in range(t)], dim=2)
491
+
492
+ return results
493
+
494
+ def decode_core(self, z, **kwargs):
495
+ if self.encoder_type == "2d" and z.dim() == 5:
496
+ b, _, t, _, _ = z.shape
497
+ z = rearrange(z, 'b c t h w -> (b t) c h w')
498
+ reshape_back = True
499
+ else:
500
+ reshape_back = False
501
+
502
+ z = 1. / self.scale_factor * z
503
+
504
+ results = self.first_stage_model.decode(z, **kwargs)
505
+
506
+ if reshape_back:
507
+ results = rearrange(results, '(b t) c h w -> b c t h w', b=b,t=t)
508
+ return results
509
+
510
+ @torch.no_grad()
511
+ def decode_first_stage(self, z, **kwargs):
512
+ return self.decode_core(z, **kwargs)
513
+
514
+ def apply_model(self, x_noisy, t, cond, **kwargs):
515
+ if isinstance(cond, dict):
516
+ # hybrid case, cond is exptected to be a dict
517
+ pass
518
+ else:
519
+ if not isinstance(cond, list):
520
+ cond = [cond]
521
+ key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
522
+ cond = {key: cond}
523
+
524
+ x_recon = self.model(x_noisy, t, **cond, **kwargs)
525
+
526
+ if isinstance(x_recon, tuple):
527
+ return x_recon[0]
528
+ else:
529
+ return x_recon
530
+
531
+ def _get_denoise_row_from_list(self, samples, desc=''):
532
+ denoise_row = []
533
+ for zd in tqdm(samples, desc=desc):
534
+ denoise_row.append(self.decode_first_stage(zd.to(self.device)))
535
+ n_log_timesteps = len(denoise_row)
536
+
537
+ denoise_row = torch.stack(denoise_row) # n_log_timesteps, b, C, H, W
538
+
539
+ if denoise_row.dim() == 5:
540
+ # img, num_imgs= n_log_timesteps * bs, grid_size=[bs,n_log_timesteps]
541
+ denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
542
+ denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
543
+ denoise_grid = make_grid(denoise_grid, nrow=n_log_timesteps)
544
+ elif denoise_row.dim() == 6:
545
+ # video, grid_size=[n_log_timesteps*bs, t]
546
+ video_length = denoise_row.shape[3]
547
+ denoise_grid = rearrange(denoise_row, 'n b c t h w -> b n c t h w')
548
+ denoise_grid = rearrange(denoise_grid, 'b n c t h w -> (b n) c t h w')
549
+ denoise_grid = rearrange(denoise_grid, 'n c t h w -> (n t) c h w')
550
+ denoise_grid = make_grid(denoise_grid, nrow=video_length)
551
+ else:
552
+ raise ValueError
553
+
554
+ return denoise_grid
555
+
556
+
557
+ # @torch.no_grad()
558
+ def decode_first_stage_2DAE(self, z, **kwargs):
559
+
560
+ b, _, t, _, _ = z.shape
561
+ z = 1. / self.scale_factor * z
562
+ results = torch.cat([self.first_stage_model.decode(z[:,:,i], **kwargs).unsqueeze(2) for i in range(t)], dim=2)
563
+
564
+ return results
565
+
566
+
567
+ def p_mean_variance(self, x, c, t, clip_denoised: bool, return_x0=False, score_corrector=None, corrector_kwargs=None, **kwargs):
568
+ t_in = t
569
+ model_out = self.apply_model(x, t_in, c, **kwargs)
570
+
571
+ if score_corrector is not None:
572
+ assert self.parameterization == "eps"
573
+ model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
574
+
575
+ if self.parameterization == "eps":
576
+ x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
577
+ elif self.parameterization == "x0":
578
+ x_recon = model_out
579
+ else:
580
+ raise NotImplementedError()
581
+
582
+ if clip_denoised:
583
+ x_recon.clamp_(-1., 1.)
584
+
585
+ model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
586
+
587
+ if return_x0:
588
+ return model_mean, posterior_variance, posterior_log_variance, x_recon
589
+ else:
590
+ return model_mean, posterior_variance, posterior_log_variance
591
+
592
+ @torch.no_grad()
593
+ def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False, return_x0=False, \
594
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, **kwargs):
595
+ b, *_, device = *x.shape, x.device
596
+ outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised, return_x0=return_x0, \
597
+ score_corrector=score_corrector, corrector_kwargs=corrector_kwargs, **kwargs)
598
+ if return_x0:
599
+ model_mean, _, model_log_variance, x0 = outputs
600
+ else:
601
+ model_mean, _, model_log_variance = outputs
602
+
603
+ noise = noise_like(x.shape, device, repeat_noise) * temperature
604
+ if noise_dropout > 0.:
605
+ noise = torch.nn.functional.dropout(noise, p=noise_dropout)
606
+ # no noise when t == 0
607
+ nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
608
+
609
+ if return_x0:
610
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
611
+ else:
612
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
613
+
614
+ @torch.no_grad()
615
+ def p_sample_loop(self, cond, shape, return_intermediates=False, x_T=None, verbose=True, callback=None, \
616
+ timesteps=None, mask=None, x0=None, img_callback=None, start_T=None, log_every_t=None, **kwargs):
617
+
618
+ if not log_every_t:
619
+ log_every_t = self.log_every_t
620
+ device = self.betas.device
621
+ b = shape[0]
622
+ # sample an initial noise
623
+ if x_T is None:
624
+ img = torch.randn(shape, device=device)
625
+ else:
626
+ img = x_T
627
+
628
+ intermediates = [img]
629
+ if timesteps is None:
630
+ timesteps = self.num_timesteps
631
+ if start_T is not None:
632
+ timesteps = min(timesteps, start_T)
633
+
634
+ iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(range(0, timesteps))
635
+
636
+ if mask is not None:
637
+ assert x0 is not None
638
+ assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
639
+
640
+ for i in iterator:
641
+ ts = torch.full((b,), i, device=device, dtype=torch.long)
642
+ if self.shorten_cond_schedule:
643
+ assert self.model.conditioning_key != 'hybrid'
644
+ tc = self.cond_ids[ts].to(cond.device)
645
+ cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
646
+
647
+ img = self.p_sample(img, cond, ts, clip_denoised=self.clip_denoised, **kwargs)
648
+ if mask is not None:
649
+ img_orig = self.q_sample(x0, ts)
650
+ img = img_orig * mask + (1. - mask) * img
651
+
652
+ if i % log_every_t == 0 or i == timesteps - 1:
653
+ intermediates.append(img)
654
+ if callback: callback(i)
655
+ if img_callback: img_callback(img, i)
656
+
657
+ if return_intermediates:
658
+ return img, intermediates
659
+ return img
660
+
661
+
662
+ class LatentVisualDiffusion(LatentDiffusion):
663
+ def __init__(self, cond_img_config, finegrained=False, random_cond=False, *args, **kwargs):
664
+ super().__init__(*args, **kwargs)
665
+ self.random_cond = random_cond
666
+ self.instantiate_img_embedder(cond_img_config, freeze=True)
667
+ num_tokens = 16 if finegrained else 4
668
+ self.image_proj_model = self.init_projector(use_finegrained=finegrained, num_tokens=num_tokens, input_dim=1024,\
669
+ cross_attention_dim=1024, dim=1280)
670
+
671
+ def instantiate_img_embedder(self, config, freeze=True):
672
+ embedder = instantiate_from_config(config)
673
+ if freeze:
674
+ self.embedder = embedder.eval()
675
+ self.embedder.train = disabled_train
676
+ for param in self.embedder.parameters():
677
+ param.requires_grad = False
678
+
679
+ def init_projector(self, use_finegrained, num_tokens, input_dim, cross_attention_dim, dim):
680
+ if not use_finegrained:
681
+ image_proj_model = ImageProjModel(clip_extra_context_tokens=num_tokens, cross_attention_dim=cross_attention_dim,
682
+ clip_embeddings_dim=input_dim
683
+ )
684
+ else:
685
+ image_proj_model = Resampler(dim=input_dim, depth=4, dim_head=64, heads=12, num_queries=num_tokens,
686
+ embedding_dim=dim, output_dim=cross_attention_dim, ff_mult=4
687
+ )
688
+ return image_proj_model
689
+
690
+ ## Never delete this func: it is used in log_images() and inference stage
691
+ def get_image_embeds(self, batch_imgs):
692
+ ## img: b c h w
693
+ img_token = self.embedder(batch_imgs)
694
+ img_emb = self.image_proj_model(img_token)
695
+ return img_emb
696
+
697
+
698
+ class DiffusionWrapper(pl.LightningModule):
699
+ def __init__(self, diff_model_config, conditioning_key):
700
+ super().__init__()
701
+ self.diffusion_model = instantiate_from_config(diff_model_config)
702
+ self.conditioning_key = conditioning_key
703
+
704
+ def forward(self, x, t, c_concat: list = None, c_crossattn: list = None,
705
+ c_adm=None, s=None, mask=None, **kwargs):
706
+ # temporal_context = fps is foNone
707
+ if self.conditioning_key is None:
708
+ out = self.diffusion_model(x, t)
709
+ elif self.conditioning_key == 'concat':
710
+ xc = torch.cat([x] + c_concat, dim=1)
711
+ out = self.diffusion_model(xc, t, **kwargs)
712
+ elif self.conditioning_key == 'crossattn':
713
+ cc = torch.cat(c_crossattn, 1)
714
+ out = self.diffusion_model(x, t, context=cc, **kwargs)
715
+ elif self.conditioning_key == 'hybrid':
716
+ ## it is just right [b,c,t,h,w]: concatenate in channel dim
717
+ xc = torch.cat([x] + c_concat, dim=1)
718
+ cc = torch.cat(c_crossattn, 1)
719
+ out = self.diffusion_model(xc, t, context=cc)
720
+ elif self.conditioning_key == 'resblockcond':
721
+ cc = c_crossattn[0]
722
+ out = self.diffusion_model(x, t, context=cc)
723
+ elif self.conditioning_key == 'adm':
724
+ cc = c_crossattn[0]
725
+ out = self.diffusion_model(x, t, y=cc)
726
+ elif self.conditioning_key == 'hybrid-adm':
727
+ assert c_adm is not None
728
+ xc = torch.cat([x] + c_concat, dim=1)
729
+ cc = torch.cat(c_crossattn, 1)
730
+ out = self.diffusion_model(xc, t, context=cc, y=c_adm)
731
+ elif self.conditioning_key == 'hybrid-time':
732
+ assert s is not None
733
+ xc = torch.cat([x] + c_concat, dim=1)
734
+ cc = torch.cat(c_crossattn, 1)
735
+ out = self.diffusion_model(xc, t, context=cc, s=s)
736
+ elif self.conditioning_key == 'concat-time-mask':
737
+ # assert s is not None
738
+ # mainlogger.info('x & mask:',x.shape,c_concat[0].shape)
739
+ xc = torch.cat([x] + c_concat, dim=1)
740
+ out = self.diffusion_model(xc, t, context=None, s=s, mask=mask)
741
+ elif self.conditioning_key == 'concat-adm-mask':
742
+ # assert s is not None
743
+ # mainlogger.info('x & mask:',x.shape,c_concat[0].shape)
744
+ if c_concat is not None:
745
+ xc = torch.cat([x] + c_concat, dim=1)
746
+ else:
747
+ xc = x
748
+ out = self.diffusion_model(xc, t, context=None, y=s, mask=mask)
749
+ elif self.conditioning_key == 'hybrid-adm-mask':
750
+ cc = torch.cat(c_crossattn, 1)
751
+ if c_concat is not None:
752
+ xc = torch.cat([x] + c_concat, dim=1)
753
+ else:
754
+ xc = x
755
+ out = self.diffusion_model(xc, t, context=cc, y=s, mask=mask)
756
+ elif self.conditioning_key == 'hybrid-time-adm': # adm means y, e.g., class index
757
+ # assert s is not None
758
+ assert c_adm is not None
759
+ xc = torch.cat([x] + c_concat, dim=1)
760
+ cc = torch.cat(c_crossattn, 1)
761
+ out = self.diffusion_model(xc, t, context=cc, s=s, y=c_adm)
762
+ else:
763
+ raise NotImplementedError()
764
+
765
+ return out
VADER-VideoCrafter/lvdm/models/samplers/ddim.py ADDED
@@ -0,0 +1,368 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from VideoCrafter: https://github.com/AILab-CVC/VideoCrafter
2
+ import numpy as np
3
+ from tqdm import tqdm
4
+ import torch
5
+ from lvdm.models.utils_diffusion import make_ddim_sampling_parameters, make_ddim_timesteps
6
+ from lvdm.common import noise_like
7
+ import random
8
+ # import ipdb
9
+ # st = ipdb.set_trace
10
+
11
+
12
+ class DDIMSampler(object):
13
+ def __init__(self, model, schedule="linear", **kwargs):
14
+ super().__init__()
15
+ self.model = model
16
+ self.ddpm_num_timesteps = model.num_timesteps
17
+ self.schedule = schedule
18
+ self.counter = 0
19
+ self.backprop_mode = 'last' # default
20
+ self.training_mode = False # default
21
+
22
+ def register_buffer(self, name, attr):
23
+ if type(attr) == torch.Tensor:
24
+ if attr.device != torch.device("cuda"):
25
+ attr = attr.to(torch.device("cuda"))
26
+ setattr(self, name, attr)
27
+
28
+ def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
29
+ self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
30
+ num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
31
+ alphas_cumprod = self.model.alphas_cumprod
32
+ assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
33
+ to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
34
+
35
+ self.register_buffer('betas', to_torch(self.model.betas))
36
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
37
+ self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
38
+ self.use_scale = self.model.use_scale
39
+ # print('DDIM scale', self.use_scale)
40
+
41
+ if self.use_scale:
42
+ self.register_buffer('scale_arr', to_torch(self.model.scale_arr))
43
+ ddim_scale_arr = self.scale_arr.cpu()[self.ddim_timesteps]
44
+ self.register_buffer('ddim_scale_arr', ddim_scale_arr)
45
+ ddim_scale_arr = np.asarray([self.scale_arr.cpu()[0]] + self.scale_arr.cpu()[self.ddim_timesteps[:-1]].tolist())
46
+ self.register_buffer('ddim_scale_arr_prev', ddim_scale_arr)
47
+
48
+ # calculations for diffusion q(x_t | x_{t-1}) and others
49
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
50
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
51
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
52
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
53
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
54
+
55
+ # ddim sampling parameters
56
+ ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
57
+ ddim_timesteps=self.ddim_timesteps,
58
+ eta=ddim_eta,verbose=verbose)
59
+ self.register_buffer('ddim_sigmas', ddim_sigmas)
60
+ self.register_buffer('ddim_alphas', ddim_alphas)
61
+ self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
62
+ self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
63
+ sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
64
+ (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
65
+ 1 - self.alphas_cumprod / self.alphas_cumprod_prev))
66
+ self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
67
+
68
+ # @torch.no_grad()
69
+ def sample(self,
70
+ S,
71
+ batch_size,
72
+ shape,
73
+ conditioning=None,
74
+ callback=None,
75
+ normals_sequence=None,
76
+ img_callback=None,
77
+ quantize_x0=False,
78
+ eta=0.,
79
+ mask=None,
80
+ x0=None,
81
+ temperature=1.,
82
+ noise_dropout=0.,
83
+ score_corrector=None,
84
+ corrector_kwargs=None,
85
+ verbose=True,
86
+ schedule_verbose=False,
87
+ x_T=None,
88
+ log_every_t=100,
89
+ unconditional_guidance_scale=1.,
90
+ unconditional_conditioning=None,
91
+ # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
92
+ **kwargs
93
+ ):
94
+
95
+ # check condition bs
96
+ if conditioning is not None:
97
+ if isinstance(conditioning, dict):
98
+ try:
99
+ cbs = conditioning[list(conditioning.keys())[0]].shape[0]
100
+ except:
101
+ cbs = conditioning[list(conditioning.keys())[0]][0].shape[0]
102
+
103
+ if cbs != batch_size:
104
+ print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
105
+ else:
106
+ if conditioning.shape[0] != batch_size:
107
+ print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
108
+
109
+ self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=schedule_verbose)
110
+ self.ddim_num_steps = S # for ddim_sampling
111
+
112
+ # make shape
113
+ if len(shape) == 3:
114
+ C, H, W = shape
115
+ size = (batch_size, C, H, W)
116
+ elif len(shape) == 4:
117
+ C, T, H, W = shape
118
+ size = (batch_size, C, T, H, W)
119
+ # print(f'Data shape for DDIM sampling is {size}, eta {eta}')
120
+
121
+ samples, intermediates = self.ddim_sampling(conditioning, size, # samples: batch, c, t, h, w
122
+ callback=callback,
123
+ img_callback=img_callback,
124
+ quantize_denoised=quantize_x0,
125
+ mask=mask, x0=x0,
126
+ ddim_use_original_steps=False,
127
+ noise_dropout=noise_dropout,
128
+ temperature=temperature,
129
+ score_corrector=score_corrector,
130
+ corrector_kwargs=corrector_kwargs,
131
+ x_T=x_T,
132
+ log_every_t=log_every_t,
133
+ unconditional_guidance_scale=unconditional_guidance_scale,
134
+ unconditional_conditioning=unconditional_conditioning,
135
+ verbose=verbose,
136
+ **kwargs)
137
+ return samples, intermediates
138
+
139
+ # @torch.no_grad()
140
+ def ddim_sampling(self, cond, shape,
141
+ x_T=None, ddim_use_original_steps=False,
142
+ callback=None, timesteps=None, quantize_denoised=False,
143
+ mask=None, x0=None, img_callback=None, log_every_t=100,
144
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
145
+ unconditional_guidance_scale=1., unconditional_conditioning=None, verbose=True,
146
+ cond_tau=1., target_size=None, start_timesteps=None,
147
+ **kwargs):
148
+ device = self.model.betas.device
149
+ # print('ddim device', device)
150
+ b = shape[0]
151
+ if x_T is None:
152
+ img = torch.randn(shape, device=device)
153
+ else:
154
+ img = x_T
155
+
156
+ if timesteps is None:
157
+ timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
158
+ elif timesteps is not None and not ddim_use_original_steps:
159
+ subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
160
+ timesteps = self.ddim_timesteps[:subset_end]
161
+
162
+ intermediates = {'x_inter': [img], 'pred_x0': [img]}
163
+ time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
164
+ total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
165
+ if verbose:
166
+ iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
167
+ else:
168
+ iterator = time_range
169
+
170
+ init_x0 = False
171
+ clean_cond = kwargs.pop("clean_cond", False)
172
+
173
+ if self.training_mode == True:
174
+ if self.backprop_mode == 'last':
175
+ backprop_cutoff_idx = self.ddim_num_steps - 1
176
+ elif self.backprop_mode == 'rand':
177
+ backprop_cutoff_idx = random.randint(0, self.ddim_num_steps - 1)
178
+ elif self.backprop_mode == 'specific':
179
+ backprop_cutoff_idx = 15
180
+
181
+ for i, step in enumerate(iterator):
182
+ index = total_steps - i - 1
183
+ ts = torch.full((b,), step, device=device, dtype=torch.long)
184
+
185
+ if self.training_mode == True:
186
+ if i >= backprop_cutoff_idx:
187
+ for name, param in self.model.named_parameters():
188
+ if "lora" in name:
189
+ param.requires_grad = True
190
+ else:
191
+ for name, param in self.model.named_parameters():
192
+ param.requires_grad = False
193
+
194
+
195
+ if start_timesteps is not None:
196
+ assert x0 is not None
197
+ if step > start_timesteps*time_range[0]:
198
+ continue
199
+ elif not init_x0:
200
+ img = self.model.q_sample(x0, ts)
201
+ init_x0 = True
202
+
203
+ # use mask to blend noised original latent (img_orig) & new sampled latent (img)
204
+ if mask is not None:
205
+ assert x0 is not None
206
+ if clean_cond:
207
+ img_orig = x0
208
+ else:
209
+ img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass? <ddim inversion>
210
+ img = img_orig * mask + (1. - mask) * img # keep original & modify use img
211
+
212
+ index_clip = int((1 - cond_tau) * total_steps)
213
+ if index <= index_clip and target_size is not None:
214
+ target_size_ = [target_size[0], target_size[1]//8, target_size[2]//8]
215
+ img = torch.nn.functional.interpolate(
216
+ img,
217
+ size=target_size_,
218
+ mode="nearest",
219
+ )
220
+
221
+ forward_context = torch.autograd.graph.save_on_cpu
222
+ with forward_context():
223
+ outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
224
+ quantize_denoised=quantize_denoised, temperature=temperature,
225
+ noise_dropout=noise_dropout, score_corrector=score_corrector,
226
+ corrector_kwargs=corrector_kwargs,
227
+ unconditional_guidance_scale=unconditional_guidance_scale,
228
+ unconditional_conditioning=unconditional_conditioning,
229
+ x0=x0,
230
+ **kwargs)
231
+
232
+ img, pred_x0 = outs
233
+
234
+ if callback: callback(i)
235
+ if img_callback: img_callback(pred_x0, i)
236
+
237
+ if index % log_every_t == 0 or index == total_steps - 1:
238
+ intermediates['x_inter'].append(img)
239
+ intermediates['pred_x0'].append(pred_x0)
240
+
241
+ return img, intermediates
242
+
243
+ # @torch.no_grad()
244
+ def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
245
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
246
+ unconditional_guidance_scale=1., unconditional_conditioning=None,
247
+ uc_type=None, conditional_guidance_scale_temporal=None, **kwargs):
248
+ b, *_, device = *x.shape, x.device
249
+
250
+ if x.dim() == 5:
251
+ is_video = True
252
+ else:
253
+ is_video = False
254
+ if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
255
+ e_t = self.model.apply_model(x, t, c, **kwargs) # unet denoiser
256
+ else:
257
+ # with unconditional condition
258
+ if isinstance(c, torch.Tensor):
259
+ e_t = self.model.apply_model(x, t, c, **kwargs) # unet denoiser
260
+ e_t_uncond = self.model.apply_model(x, t, unconditional_conditioning, **kwargs)
261
+ elif isinstance(c, dict):
262
+ e_t = self.model.apply_model(x, t, c, **kwargs) # unet denoiser
263
+ e_t_uncond = self.model.apply_model(x, t, unconditional_conditioning, **kwargs) # unet denoiser
264
+ else:
265
+ raise NotImplementedError
266
+
267
+ if uc_type is None:
268
+ e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
269
+ else:
270
+ if uc_type == 'cfg_original':
271
+ e_t = e_t + unconditional_guidance_scale * (e_t - e_t_uncond)
272
+ elif uc_type == 'cfg_ours':
273
+ e_t = e_t + unconditional_guidance_scale * (e_t_uncond - e_t)
274
+ else:
275
+ raise NotImplementedError
276
+
277
+ # temporal guidance
278
+ if conditional_guidance_scale_temporal is not None:
279
+ e_t_temporal = self.model.apply_model(x, t, c, **kwargs)
280
+ e_t_image = self.model.apply_model(x, t, c, no_temporal_attn=True, **kwargs)
281
+ e_t = e_t + conditional_guidance_scale_temporal * (e_t_temporal - e_t_image)
282
+
283
+ if score_corrector is not None:
284
+ assert self.model.parameterization == "eps"
285
+ e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
286
+
287
+ alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
288
+ alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
289
+ sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
290
+ sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
291
+ # select parameters corresponding to the currently considered timestep
292
+
293
+ if is_video:
294
+ size = (b, 1, 1, 1, 1)
295
+ else:
296
+ size = (b, 1, 1, 1)
297
+ a_t = torch.full(size, alphas[index], device=device)
298
+ a_prev = torch.full(size, alphas_prev[index], device=device)
299
+ sigma_t = torch.full(size, sigmas[index], device=device)
300
+ sqrt_one_minus_at = torch.full(size, sqrt_one_minus_alphas[index],device=device)
301
+
302
+ # current prediction for x_0
303
+ pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
304
+ if quantize_denoised:
305
+ pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
306
+ # direction pointing to x_t
307
+ dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
308
+
309
+ noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
310
+ if noise_dropout > 0.:
311
+ noise = torch.nn.functional.dropout(noise, p=noise_dropout)
312
+ alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
313
+ if self.use_scale:
314
+ scale_arr = self.model.scale_arr if use_original_steps else self.ddim_scale_arr
315
+ scale_t = torch.full(size, scale_arr[index], device=device)
316
+ scale_arr_prev = self.model.scale_arr_prev if use_original_steps else self.ddim_scale_arr_prev
317
+ scale_t_prev = torch.full(size, scale_arr_prev[index], device=device)
318
+ pred_x0 /= scale_t
319
+ x_prev = a_prev.sqrt() * scale_t_prev * pred_x0 + dir_xt + noise
320
+ else:
321
+ x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
322
+
323
+ return x_prev, pred_x0
324
+
325
+
326
+ @torch.no_grad()
327
+ def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
328
+ # fast, but does not allow for exact reconstruction
329
+ # t serves as an index to gather the correct alphas
330
+ if use_original_steps:
331
+ sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
332
+ sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
333
+ else:
334
+ sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
335
+ sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
336
+
337
+ if noise is None:
338
+ noise = torch.randn_like(x0)
339
+
340
+ def extract_into_tensor(a, t, x_shape):
341
+ b, *_ = t.shape
342
+ out = a.gather(-1, t)
343
+ return out.reshape(b, *((1,) * (len(x_shape) - 1)))
344
+
345
+ return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
346
+ extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)
347
+
348
+ @torch.no_grad()
349
+ def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
350
+ use_original_steps=False):
351
+
352
+ timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
353
+ timesteps = timesteps[:t_start]
354
+
355
+ time_range = np.flip(timesteps)
356
+ total_steps = timesteps.shape[0]
357
+ print(f"Running DDIM Sampling with {total_steps} timesteps")
358
+
359
+ iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
360
+ x_dec = x_latent
361
+ for i, step in enumerate(iterator):
362
+ index = total_steps - i - 1
363
+ ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
364
+ x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
365
+ unconditional_guidance_scale=unconditional_guidance_scale,
366
+ unconditional_conditioning=unconditional_conditioning)
367
+ return x_dec
368
+
VADER-VideoCrafter/lvdm/models/utils_diffusion.py ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copied from VideoCrafter: https://github.com/AILab-CVC/VideoCrafter
2
+ import math
3
+ import numpy as np
4
+ from einops import repeat
5
+ import torch
6
+ import torch.nn.functional as F
7
+
8
+
9
+ def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
10
+ """
11
+ Create sinusoidal timestep embeddings.
12
+ :param timesteps: a 1-D Tensor of N indices, one per batch element.
13
+ These may be fractional.
14
+ :param dim: the dimension of the output.
15
+ :param max_period: controls the minimum frequency of the embeddings.
16
+ :return: an [N x dim] Tensor of positional embeddings.
17
+ """
18
+ if not repeat_only:
19
+ half = dim // 2
20
+ freqs = torch.exp(
21
+ -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
22
+ ).to(device=timesteps.device)
23
+ args = timesteps[:, None].float() * freqs[None]
24
+ embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
25
+ if dim % 2:
26
+ embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
27
+ else:
28
+ embedding = repeat(timesteps, 'b -> b d', d=dim)
29
+ return embedding
30
+
31
+
32
+ def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
33
+ if schedule == "linear":
34
+ betas = (
35
+ torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
36
+ )
37
+
38
+ elif schedule == "cosine":
39
+ timesteps = (
40
+ torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
41
+ )
42
+ alphas = timesteps / (1 + cosine_s) * np.pi / 2
43
+ alphas = torch.cos(alphas).pow(2)
44
+ alphas = alphas / alphas[0]
45
+ betas = 1 - alphas[1:] / alphas[:-1]
46
+ betas = np.clip(betas, a_min=0, a_max=0.999)
47
+
48
+ elif schedule == "sqrt_linear":
49
+ betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
50
+ elif schedule == "sqrt":
51
+ betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
52
+ else:
53
+ raise ValueError(f"schedule '{schedule}' unknown.")
54
+ return betas.numpy()
55
+
56
+
57
+ def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
58
+ if ddim_discr_method == 'uniform':
59
+ c = num_ddpm_timesteps // num_ddim_timesteps
60
+ ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
61
+ elif ddim_discr_method == 'quad':
62
+ ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int)
63
+ else:
64
+ raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
65
+
66
+ # assert ddim_timesteps.shape[0] == num_ddim_timesteps
67
+ # add one to get the final alpha values right (the ones from first scale to data during sampling)
68
+ steps_out = ddim_timesteps + 1
69
+ if verbose:
70
+ print(f'Selected timesteps for ddim sampler: {steps_out}')
71
+ return steps_out
72
+
73
+
74
+ def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
75
+ # select alphas for computing the variance schedule
76
+ # print(f'ddim_timesteps={ddim_timesteps}, len_alphacums={len(alphacums)}')
77
+ alphas = alphacums[ddim_timesteps]
78
+ alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
79
+
80
+ # according the the formula provided in https://arxiv.org/abs/2010.02502
81
+ sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
82
+ if verbose:
83
+ print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
84
+ print(f'For the chosen value of eta, which is {eta}, '
85
+ f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
86
+ return sigmas, alphas, alphas_prev
87
+
88
+
89
+ def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
90
+ """
91
+ Create a beta schedule that discretizes the given alpha_t_bar function,
92
+ which defines the cumulative product of (1-beta) over time from t = [0,1].
93
+ :param num_diffusion_timesteps: the number of betas to produce.
94
+ :param alpha_bar: a lambda that takes an argument t from 0 to 1 and
95
+ produces the cumulative product of (1-beta) up to that
96
+ part of the diffusion process.
97
+ :param max_beta: the maximum beta to use; use values lower than 1 to
98
+ prevent singularities.
99
+ """
100
+ betas = []
101
+ for i in range(num_diffusion_timesteps):
102
+ t1 = i / num_diffusion_timesteps
103
+ t2 = (i + 1) / num_diffusion_timesteps
104
+ betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
105
+ return np.array(betas)
VADER-VideoCrafter/lvdm/modules/attention.py ADDED
@@ -0,0 +1,476 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copied from VideoCrafter: https://github.com/AILab-CVC/VideoCrafter
2
+ from functools import partial
3
+ import torch
4
+ from torch import nn, einsum
5
+ import torch.nn.functional as F
6
+ from einops import rearrange, repeat
7
+ try:
8
+ import xformers
9
+ import xformers.ops
10
+ XFORMERS_IS_AVAILBLE = True
11
+ except:
12
+ XFORMERS_IS_AVAILBLE = False
13
+ from lvdm.common import (
14
+ checkpoint,
15
+ exists,
16
+ default,
17
+ )
18
+ from lvdm.basics import (
19
+ zero_module,
20
+ )
21
+
22
+ class RelativePosition(nn.Module):
23
+ """ https://github.com/evelinehong/Transformer_Relative_Position_PyTorch/blob/master/relative_position.py """
24
+
25
+ def __init__(self, num_units, max_relative_position):
26
+ super().__init__()
27
+ self.num_units = num_units
28
+ self.max_relative_position = max_relative_position
29
+ self.embeddings_table = nn.Parameter(torch.Tensor(max_relative_position * 2 + 1, num_units))
30
+ nn.init.xavier_uniform_(self.embeddings_table)
31
+
32
+ def forward(self, length_q, length_k):
33
+ device = self.embeddings_table.device
34
+ range_vec_q = torch.arange(length_q, device=device)
35
+ range_vec_k = torch.arange(length_k, device=device)
36
+ distance_mat = range_vec_k[None, :] - range_vec_q[:, None]
37
+ distance_mat_clipped = torch.clamp(distance_mat, -self.max_relative_position, self.max_relative_position)
38
+ final_mat = distance_mat_clipped + self.max_relative_position
39
+ final_mat = final_mat.long()
40
+ embeddings = self.embeddings_table[final_mat]
41
+ return embeddings
42
+
43
+
44
+ class CrossAttention(nn.Module):
45
+
46
+ def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.,
47
+ relative_position=False, temporal_length=None, img_cross_attention=False):
48
+ super().__init__()
49
+ inner_dim = dim_head * heads
50
+ context_dim = default(context_dim, query_dim)
51
+
52
+ self.scale = dim_head**-0.5
53
+ self.heads = heads
54
+ self.dim_head = dim_head
55
+ self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
56
+ self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
57
+ self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
58
+ self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))
59
+
60
+ self.image_cross_attention_scale = 1.0
61
+ self.text_context_len = 77
62
+ self.img_cross_attention = img_cross_attention
63
+ if self.img_cross_attention:
64
+ self.to_k_ip = nn.Linear(context_dim, inner_dim, bias=False)
65
+ self.to_v_ip = nn.Linear(context_dim, inner_dim, bias=False)
66
+
67
+ self.relative_position = relative_position
68
+ if self.relative_position:
69
+ assert(temporal_length is not None)
70
+ self.relative_position_k = RelativePosition(num_units=dim_head, max_relative_position=temporal_length)
71
+ self.relative_position_v = RelativePosition(num_units=dim_head, max_relative_position=temporal_length)
72
+ else:
73
+ ## only used for spatial attention, while NOT for temporal attention
74
+ if XFORMERS_IS_AVAILBLE and temporal_length is None:
75
+ self.forward = self.efficient_forward
76
+
77
+ def forward(self, x, context=None, mask=None):
78
+ h = self.heads
79
+
80
+ q = self.to_q(x)
81
+ context = default(context, x)
82
+ ## considering image token additionally
83
+ if context is not None and self.img_cross_attention:
84
+ context, context_img = context[:,:self.text_context_len,:], context[:,self.text_context_len:,:]
85
+ k = self.to_k(context)
86
+ v = self.to_v(context)
87
+ k_ip = self.to_k_ip(context_img)
88
+ v_ip = self.to_v_ip(context_img)
89
+ else:
90
+ k = self.to_k(context)
91
+ v = self.to_v(context)
92
+
93
+ q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
94
+ sim = torch.einsum('b i d, b j d -> b i j', q, k) * self.scale
95
+ if self.relative_position:
96
+ len_q, len_k, len_v = q.shape[1], k.shape[1], v.shape[1]
97
+ k2 = self.relative_position_k(len_q, len_k)
98
+ sim2 = einsum('b t d, t s d -> b t s', q, k2) * self.scale # TODO check
99
+ sim += sim2
100
+ del k
101
+
102
+ if exists(mask):
103
+ ## feasible for causal attention mask only
104
+ max_neg_value = -torch.finfo(sim.dtype).max
105
+ mask = repeat(mask, 'b i j -> (b h) i j', h=h)
106
+ sim.masked_fill_(~(mask>0.5), max_neg_value)
107
+
108
+ # attention, what we cannot get enough of
109
+ sim = sim.softmax(dim=-1)
110
+ out = torch.einsum('b i j, b j d -> b i d', sim, v)
111
+ if self.relative_position:
112
+ v2 = self.relative_position_v(len_q, len_v)
113
+ out2 = einsum('b t s, t s d -> b t d', sim, v2) # TODO check
114
+ out += out2
115
+ out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
116
+
117
+ ## considering image token additionally
118
+ if context is not None and self.img_cross_attention:
119
+ k_ip, v_ip = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (k_ip, v_ip))
120
+ sim_ip = torch.einsum('b i d, b j d -> b i j', q, k_ip) * self.scale
121
+ del k_ip
122
+ sim_ip = sim_ip.softmax(dim=-1)
123
+ out_ip = torch.einsum('b i j, b j d -> b i d', sim_ip, v_ip)
124
+ out_ip = rearrange(out_ip, '(b h) n d -> b n (h d)', h=h)
125
+ out = out + self.image_cross_attention_scale * out_ip
126
+ del q
127
+
128
+ return self.to_out(out)
129
+
130
+ def efficient_forward(self, x, context=None, mask=None):
131
+ q = self.to_q(x)
132
+ context = default(context, x)
133
+
134
+ ## considering image token additionally
135
+ if context is not None and self.img_cross_attention:
136
+ context, context_img = context[:,:self.text_context_len,:], context[:,self.text_context_len:,:]
137
+ k = self.to_k(context)
138
+ v = self.to_v(context)
139
+ k_ip = self.to_k_ip(context_img)
140
+ v_ip = self.to_v_ip(context_img)
141
+ else:
142
+ k = self.to_k(context)
143
+ v = self.to_v(context)
144
+
145
+ b, _, _ = q.shape
146
+ q, k, v = map(
147
+ lambda t: t.unsqueeze(3)
148
+ .reshape(b, t.shape[1], self.heads, self.dim_head)
149
+ .permute(0, 2, 1, 3)
150
+ .reshape(b * self.heads, t.shape[1], self.dim_head)
151
+ .contiguous(),
152
+ (q, k, v),
153
+ )
154
+ # actually compute the attention, what we cannot get enough of
155
+ out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=None)
156
+
157
+ ## considering image token additionally
158
+ if context is not None and self.img_cross_attention:
159
+ k_ip, v_ip = map(
160
+ lambda t: t.unsqueeze(3)
161
+ .reshape(b, t.shape[1], self.heads, self.dim_head)
162
+ .permute(0, 2, 1, 3)
163
+ .reshape(b * self.heads, t.shape[1], self.dim_head)
164
+ .contiguous(),
165
+ (k_ip, v_ip),
166
+ )
167
+ out_ip = xformers.ops.memory_efficient_attention(q, k_ip, v_ip, attn_bias=None, op=None)
168
+ out_ip = (
169
+ out_ip.unsqueeze(0)
170
+ .reshape(b, self.heads, out.shape[1], self.dim_head)
171
+ .permute(0, 2, 1, 3)
172
+ .reshape(b, out.shape[1], self.heads * self.dim_head)
173
+ )
174
+
175
+ if exists(mask):
176
+ raise NotImplementedError
177
+ out = (
178
+ out.unsqueeze(0)
179
+ .reshape(b, self.heads, out.shape[1], self.dim_head)
180
+ .permute(0, 2, 1, 3)
181
+ .reshape(b, out.shape[1], self.heads * self.dim_head)
182
+ )
183
+ if context is not None and self.img_cross_attention:
184
+ out = out + self.image_cross_attention_scale * out_ip
185
+ return self.to_out(out)
186
+
187
+
188
+ class BasicTransformerBlock(nn.Module):
189
+
190
+ def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True,
191
+ disable_self_attn=False, attention_cls=None, img_cross_attention=False):
192
+ super().__init__()
193
+ attn_cls = CrossAttention if attention_cls is None else attention_cls
194
+ self.disable_self_attn = disable_self_attn
195
+ self.attn1 = attn_cls(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout,
196
+ context_dim=context_dim if self.disable_self_attn else None)
197
+ self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
198
+ self.attn2 = attn_cls(query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout,
199
+ img_cross_attention=img_cross_attention)
200
+ self.norm1 = nn.LayerNorm(dim)
201
+ self.norm2 = nn.LayerNorm(dim)
202
+ self.norm3 = nn.LayerNorm(dim)
203
+ self.checkpoint = checkpoint
204
+
205
+ def forward(self, x, context=None, mask=None):
206
+ ## implementation tricks: because checkpointing doesn't support non-tensor (e.g. None or scalar) arguments
207
+ input_tuple = (x,) ## should not be (x), otherwise *input_tuple will decouple x into multiple arguments
208
+ if context is not None:
209
+ input_tuple = (x, context)
210
+ if mask is not None:
211
+ forward_mask = partial(self._forward, mask=mask)
212
+ return checkpoint(forward_mask, (x,), self.parameters(), self.checkpoint)
213
+ if context is not None and mask is not None:
214
+ input_tuple = (x, context, mask)
215
+ return checkpoint(self._forward, input_tuple, self.parameters(), self.checkpoint)
216
+
217
+ def _forward(self, x, context=None, mask=None):
218
+ x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None, mask=mask) + x
219
+ x = self.attn2(self.norm2(x), context=context, mask=mask) + x
220
+ x = self.ff(self.norm3(x)) + x
221
+ return x
222
+
223
+
224
+ class SpatialTransformer(nn.Module):
225
+ """
226
+ Transformer block for image-like data in spatial axis.
227
+ First, project the input (aka embedding)
228
+ and reshape to b, t, d.
229
+ Then apply standard transformer action.
230
+ Finally, reshape to image
231
+ NEW: use_linear for more efficiency instead of the 1x1 convs
232
+ """
233
+
234
+ def __init__(self, in_channels, n_heads, d_head, depth=1, dropout=0., context_dim=None,
235
+ use_checkpoint=True, disable_self_attn=False, use_linear=False, img_cross_attention=False):
236
+ super().__init__()
237
+ self.in_channels = in_channels
238
+ inner_dim = n_heads * d_head
239
+ self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
240
+ if not use_linear:
241
+ self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
242
+ else:
243
+ self.proj_in = nn.Linear(in_channels, inner_dim)
244
+
245
+ self.transformer_blocks = nn.ModuleList([
246
+ BasicTransformerBlock(
247
+ inner_dim,
248
+ n_heads,
249
+ d_head,
250
+ dropout=dropout,
251
+ context_dim=context_dim,
252
+ img_cross_attention=img_cross_attention,
253
+ disable_self_attn=disable_self_attn,
254
+ checkpoint=use_checkpoint) for d in range(depth)
255
+ ])
256
+ if not use_linear:
257
+ self.proj_out = zero_module(nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0))
258
+ else:
259
+ self.proj_out = zero_module(nn.Linear(inner_dim, in_channels))
260
+ self.use_linear = use_linear
261
+
262
+
263
+ def forward(self, x, context=None):
264
+ b, c, h, w = x.shape
265
+ x_in = x
266
+ x = self.norm(x)
267
+ if not self.use_linear:
268
+ x = self.proj_in(x)
269
+ x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
270
+ if self.use_linear:
271
+ x = self.proj_in(x)
272
+ for i, block in enumerate(self.transformer_blocks):
273
+ x = block(x, context=context)
274
+ if self.use_linear:
275
+ x = self.proj_out(x)
276
+ x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
277
+ if not self.use_linear:
278
+ x = self.proj_out(x)
279
+ return x + x_in
280
+
281
+
282
+ class TemporalTransformer(nn.Module):
283
+ """
284
+ Transformer block for image-like data in temporal axis.
285
+ First, reshape to b, t, d.
286
+ Then apply standard transformer action.
287
+ Finally, reshape to image
288
+ """
289
+ def __init__(self, in_channels, n_heads, d_head, depth=1, dropout=0., context_dim=None,
290
+ use_checkpoint=True, use_linear=False, only_self_att=True, causal_attention=False,
291
+ relative_position=False, temporal_length=None):
292
+ super().__init__()
293
+ self.only_self_att = only_self_att
294
+ self.relative_position = relative_position
295
+ self.causal_attention = causal_attention
296
+ self.in_channels = in_channels
297
+ inner_dim = n_heads * d_head
298
+ self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
299
+ self.proj_in = nn.Conv1d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
300
+ if not use_linear:
301
+ self.proj_in = nn.Conv1d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
302
+ else:
303
+ self.proj_in = nn.Linear(in_channels, inner_dim)
304
+
305
+ if relative_position:
306
+ assert(temporal_length is not None)
307
+ attention_cls = partial(CrossAttention, relative_position=True, temporal_length=temporal_length)
308
+ else:
309
+ attention_cls = None
310
+ if self.causal_attention:
311
+ assert(temporal_length is not None)
312
+ self.mask = torch.tril(torch.ones([1, temporal_length, temporal_length]))
313
+
314
+ if self.only_self_att:
315
+ context_dim = None
316
+ self.transformer_blocks = nn.ModuleList([
317
+ BasicTransformerBlock(
318
+ inner_dim,
319
+ n_heads,
320
+ d_head,
321
+ dropout=dropout,
322
+ context_dim=context_dim,
323
+ attention_cls=attention_cls,
324
+ checkpoint=use_checkpoint) for d in range(depth)
325
+ ])
326
+ if not use_linear:
327
+ self.proj_out = zero_module(nn.Conv1d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0))
328
+ else:
329
+ self.proj_out = zero_module(nn.Linear(inner_dim, in_channels))
330
+ self.use_linear = use_linear
331
+
332
+ def forward(self, x, context=None):
333
+ b, c, t, h, w = x.shape
334
+ x_in = x
335
+ x = self.norm(x)
336
+ x = rearrange(x, 'b c t h w -> (b h w) c t').contiguous()
337
+ if not self.use_linear:
338
+ x = self.proj_in(x)
339
+ x = rearrange(x, 'bhw c t -> bhw t c').contiguous()
340
+ if self.use_linear:
341
+ x = self.proj_in(x)
342
+
343
+ if self.causal_attention:
344
+ mask = self.mask.to(x.device)
345
+ mask = repeat(mask, 'l i j -> (l bhw) i j', bhw=b*h*w)
346
+ else:
347
+ mask = None
348
+
349
+ if self.only_self_att:
350
+ ## note: if no context is given, cross-attention defaults to self-attention
351
+ for i, block in enumerate(self.transformer_blocks):
352
+ x = block(x, mask=mask)
353
+ x = rearrange(x, '(b hw) t c -> b hw t c', b=b).contiguous()
354
+ else:
355
+ x = rearrange(x, '(b hw) t c -> b hw t c', b=b).contiguous()
356
+ context = rearrange(context, '(b t) l con -> b t l con', t=t).contiguous()
357
+ for i, block in enumerate(self.transformer_blocks):
358
+ # calculate each batch one by one (since number in shape could not greater then 65,535 for some package)
359
+ for j in range(b):
360
+ context_j = repeat(
361
+ context[j],
362
+ 't l con -> (t r) l con', r=(h * w) // t, t=t).contiguous()
363
+ ## note: causal mask will not applied in cross-attention case
364
+ x[j] = block(x[j], context=context_j)
365
+
366
+ if self.use_linear:
367
+ x = self.proj_out(x)
368
+ x = rearrange(x, 'b (h w) t c -> b c t h w', h=h, w=w).contiguous()
369
+ if not self.use_linear:
370
+ x = rearrange(x, 'b hw t c -> (b hw) c t').contiguous()
371
+ x = self.proj_out(x)
372
+ x = rearrange(x, '(b h w) c t -> b c t h w', b=b, h=h, w=w).contiguous()
373
+
374
+ return x + x_in
375
+
376
+
377
+ class GEGLU(nn.Module):
378
+ def __init__(self, dim_in, dim_out):
379
+ super().__init__()
380
+ self.proj = nn.Linear(dim_in, dim_out * 2)
381
+
382
+ def forward(self, x):
383
+ x, gate = self.proj(x).chunk(2, dim=-1)
384
+ return x * F.gelu(gate)
385
+
386
+
387
+ class FeedForward(nn.Module):
388
+ def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
389
+ super().__init__()
390
+ inner_dim = int(dim * mult)
391
+ dim_out = default(dim_out, dim)
392
+ project_in = nn.Sequential(
393
+ nn.Linear(dim, inner_dim),
394
+ nn.GELU()
395
+ ) if not glu else GEGLU(dim, inner_dim)
396
+
397
+ self.net = nn.Sequential(
398
+ project_in,
399
+ nn.Dropout(dropout),
400
+ nn.Linear(inner_dim, dim_out)
401
+ )
402
+
403
+ def forward(self, x):
404
+ return self.net(x)
405
+
406
+
407
+ class LinearAttention(nn.Module):
408
+ def __init__(self, dim, heads=4, dim_head=32):
409
+ super().__init__()
410
+ self.heads = heads
411
+ hidden_dim = dim_head * heads
412
+ self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False)
413
+ self.to_out = nn.Conv2d(hidden_dim, dim, 1)
414
+
415
+ def forward(self, x):
416
+ b, c, h, w = x.shape
417
+ qkv = self.to_qkv(x)
418
+ q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3)
419
+ k = k.softmax(dim=-1)
420
+ context = torch.einsum('bhdn,bhen->bhde', k, v)
421
+ out = torch.einsum('bhde,bhdn->bhen', context, q)
422
+ out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w)
423
+ return self.to_out(out)
424
+
425
+
426
+ class SpatialSelfAttention(nn.Module):
427
+ def __init__(self, in_channels):
428
+ super().__init__()
429
+ self.in_channels = in_channels
430
+
431
+ self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
432
+ self.q = torch.nn.Conv2d(in_channels,
433
+ in_channels,
434
+ kernel_size=1,
435
+ stride=1,
436
+ padding=0)
437
+ self.k = torch.nn.Conv2d(in_channels,
438
+ in_channels,
439
+ kernel_size=1,
440
+ stride=1,
441
+ padding=0)
442
+ self.v = torch.nn.Conv2d(in_channels,
443
+ in_channels,
444
+ kernel_size=1,
445
+ stride=1,
446
+ padding=0)
447
+ self.proj_out = torch.nn.Conv2d(in_channels,
448
+ in_channels,
449
+ kernel_size=1,
450
+ stride=1,
451
+ padding=0)
452
+
453
+ def forward(self, x):
454
+ h_ = x
455
+ h_ = self.norm(h_)
456
+ q = self.q(h_)
457
+ k = self.k(h_)
458
+ v = self.v(h_)
459
+
460
+ # compute attention
461
+ b,c,h,w = q.shape
462
+ q = rearrange(q, 'b c h w -> b (h w) c')
463
+ k = rearrange(k, 'b c h w -> b c (h w)')
464
+ w_ = torch.einsum('bij,bjk->bik', q, k)
465
+
466
+ w_ = w_ * (int(c)**(-0.5))
467
+ w_ = torch.nn.functional.softmax(w_, dim=2)
468
+
469
+ # attend to values
470
+ v = rearrange(v, 'b c h w -> b c (h w)')
471
+ w_ = rearrange(w_, 'b i j -> b j i')
472
+ h_ = torch.einsum('bij,bjk->bik', v, w_)
473
+ h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
474
+ h_ = self.proj_out(h_)
475
+
476
+ return x+h_
VADER-VideoCrafter/lvdm/modules/encoders/condition.py ADDED
@@ -0,0 +1,393 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copied from VideoCrafter: https://github.com/AILab-CVC/VideoCrafter
2
+ import torch
3
+ import torch.nn as nn
4
+ from torch.utils.checkpoint import checkpoint
5
+ import kornia
6
+ import open_clip
7
+ from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextModel
8
+ from lvdm.common import autocast
9
+ from utils.utils import count_params
10
+
11
+ class AbstractEncoder(nn.Module):
12
+ def __init__(self):
13
+ super().__init__()
14
+
15
+ def encode(self, *args, **kwargs):
16
+ raise NotImplementedError
17
+
18
+
19
+ class IdentityEncoder(AbstractEncoder):
20
+
21
+ def encode(self, x):
22
+ return x
23
+
24
+
25
+ class ClassEmbedder(nn.Module):
26
+ def __init__(self, embed_dim, n_classes=1000, key='class', ucg_rate=0.1):
27
+ super().__init__()
28
+ self.key = key
29
+ self.embedding = nn.Embedding(n_classes, embed_dim)
30
+ self.n_classes = n_classes
31
+ self.ucg_rate = ucg_rate
32
+
33
+ def forward(self, batch, key=None, disable_dropout=False):
34
+ if key is None:
35
+ key = self.key
36
+ # this is for use in crossattn
37
+ c = batch[key][:, None]
38
+ if self.ucg_rate > 0. and not disable_dropout:
39
+ mask = 1. - torch.bernoulli(torch.ones_like(c) * self.ucg_rate)
40
+ c = mask * c + (1 - mask) * torch.ones_like(c) * (self.n_classes - 1)
41
+ c = c.long()
42
+ c = self.embedding(c)
43
+ return c
44
+
45
+ def get_unconditional_conditioning(self, bs, device="cuda"):
46
+ uc_class = self.n_classes - 1 # 1000 classes --> 0 ... 999, one extra class for ucg (class 1000)
47
+ uc = torch.ones((bs,), device=device) * uc_class
48
+ uc = {self.key: uc}
49
+ return uc
50
+
51
+
52
+ def disabled_train(self, mode=True):
53
+ """Overwrite model.train with this function to make sure train/eval mode
54
+ does not change anymore."""
55
+ return self
56
+
57
+
58
+ class FrozenT5Embedder(AbstractEncoder):
59
+ """Uses the T5 transformer encoder for text"""
60
+
61
+ def __init__(self, version="google/t5-v1_1-large", device="cuda", max_length=77,
62
+ freeze=True): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
63
+ super().__init__()
64
+ self.tokenizer = T5Tokenizer.from_pretrained(version)
65
+ self.transformer = T5EncoderModel.from_pretrained(version)
66
+ self.device = device
67
+ self.max_length = max_length # TODO: typical value?
68
+ if freeze:
69
+ self.freeze()
70
+
71
+ def freeze(self):
72
+ self.transformer = self.transformer.eval()
73
+ # self.train = disabled_train
74
+ for param in self.parameters():
75
+ param.requires_grad = False
76
+
77
+ def forward(self, text):
78
+ batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
79
+ return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
80
+ tokens = batch_encoding["input_ids"].to(self.device)
81
+ outputs = self.transformer(input_ids=tokens)
82
+
83
+ z = outputs.last_hidden_state
84
+ return z
85
+
86
+ def encode(self, text):
87
+ return self(text)
88
+
89
+
90
+ class FrozenCLIPEmbedder(AbstractEncoder):
91
+ """Uses the CLIP transformer encoder for text (from huggingface)"""
92
+ LAYERS = [
93
+ "last",
94
+ "pooled",
95
+ "hidden"
96
+ ]
97
+
98
+ def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77,
99
+ freeze=True, layer="last", layer_idx=None): # clip-vit-base-patch32
100
+ super().__init__()
101
+ assert layer in self.LAYERS
102
+ self.tokenizer = CLIPTokenizer.from_pretrained(version)
103
+ self.transformer = CLIPTextModel.from_pretrained(version)
104
+ self.device = device
105
+ self.max_length = max_length
106
+ if freeze:
107
+ self.freeze()
108
+ self.layer = layer
109
+ self.layer_idx = layer_idx
110
+ if layer == "hidden":
111
+ assert layer_idx is not None
112
+ assert 0 <= abs(layer_idx) <= 12
113
+
114
+ def freeze(self):
115
+ self.transformer = self.transformer.eval()
116
+ # self.train = disabled_train
117
+ for param in self.parameters():
118
+ param.requires_grad = False
119
+
120
+ def forward(self, text):
121
+ batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
122
+ return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
123
+ tokens = batch_encoding["input_ids"].to(self.device)
124
+ outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer == "hidden")
125
+ if self.layer == "last":
126
+ z = outputs.last_hidden_state
127
+ elif self.layer == "pooled":
128
+ z = outputs.pooler_output[:, None, :]
129
+ else:
130
+ z = outputs.hidden_states[self.layer_idx]
131
+ return z
132
+
133
+ def encode(self, text):
134
+ return self(text)
135
+
136
+
137
+ class ClipImageEmbedder(nn.Module):
138
+ def __init__(
139
+ self,
140
+ model,
141
+ jit=False,
142
+ device='cuda' if torch.cuda.is_available() else 'cpu',
143
+ antialias=True,
144
+ ucg_rate=0.
145
+ ):
146
+ super().__init__()
147
+ from clip import load as load_clip
148
+ self.model, _ = load_clip(name=model, device=device, jit=jit)
149
+
150
+ self.antialias = antialias
151
+
152
+ self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
153
+ self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
154
+ self.ucg_rate = ucg_rate
155
+
156
+ def preprocess(self, x):
157
+ # normalize to [0,1]
158
+ x = kornia.geometry.resize(x, (224, 224),
159
+ interpolation='bicubic', align_corners=True,
160
+ antialias=self.antialias)
161
+ x = (x + 1.) / 2.
162
+ # re-normalize according to clip
163
+ x = kornia.enhance.normalize(x, self.mean, self.std)
164
+ return x
165
+
166
+ def forward(self, x, no_dropout=False):
167
+ # x is assumed to be in range [-1,1]
168
+ out = self.model.encode_image(self.preprocess(x))
169
+ out = out.to(x.dtype)
170
+ if self.ucg_rate > 0. and not no_dropout:
171
+ out = torch.bernoulli((1. - self.ucg_rate) * torch.ones(out.shape[0], device=out.device))[:, None] * out
172
+ return out
173
+
174
+
175
+ class FrozenOpenCLIPEmbedder(AbstractEncoder):
176
+ """
177
+ Uses the OpenCLIP transformer encoder for text
178
+ """
179
+ LAYERS = [
180
+ # "pooled",
181
+ "last",
182
+ "penultimate"
183
+ ]
184
+
185
+ def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda", max_length=77,
186
+ freeze=True, layer="last"):
187
+ super().__init__()
188
+ assert layer in self.LAYERS
189
+ model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'))
190
+ del model.visual
191
+ self.model = model
192
+
193
+ self.device = device
194
+ self.max_length = max_length
195
+ if freeze:
196
+ self.freeze()
197
+ self.layer = layer
198
+ if self.layer == "last":
199
+ self.layer_idx = 0
200
+ elif self.layer == "penultimate":
201
+ self.layer_idx = 1
202
+ else:
203
+ raise NotImplementedError()
204
+
205
+ def freeze(self):
206
+ self.model = self.model.eval()
207
+ for param in self.parameters():
208
+ param.requires_grad = False
209
+
210
+ def forward(self, text):
211
+ self.device = self.model.positional_embedding.device
212
+ tokens = open_clip.tokenize(text)
213
+ z = self.encode_with_transformer(tokens.to(self.device))
214
+ return z
215
+
216
+ def encode_with_transformer(self, text):
217
+ x = self.model.token_embedding(text) # [batch_size, n_ctx, d_model]
218
+ x = x + self.model.positional_embedding
219
+ x = x.permute(1, 0, 2) # NLD -> LND
220
+ x = self.text_transformer_forward(x, attn_mask=self.model.attn_mask)
221
+ x = x.permute(1, 0, 2) # LND -> NLD
222
+ x = self.model.ln_final(x)
223
+ return x
224
+
225
+ def text_transformer_forward(self, x: torch.Tensor, attn_mask=None):
226
+ for i, r in enumerate(self.model.transformer.resblocks):
227
+ if i == len(self.model.transformer.resblocks) - self.layer_idx:
228
+ break
229
+ if self.model.transformer.grad_checkpointing and not torch.jit.is_scripting():
230
+ x = checkpoint(r, x, attn_mask)
231
+ else:
232
+ x = r(x, attn_mask=attn_mask)
233
+ return x
234
+
235
+ def encode(self, text):
236
+ return self(text)
237
+
238
+
239
+ class FrozenOpenCLIPImageEmbedder(AbstractEncoder):
240
+ """
241
+ Uses the OpenCLIP vision transformer encoder for images
242
+ """
243
+
244
+ def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda", max_length=77,
245
+ freeze=True, layer="pooled", antialias=True, ucg_rate=0.):
246
+ super().__init__()
247
+ model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'),
248
+ pretrained=version, )
249
+ del model.transformer
250
+ self.model = model
251
+
252
+ self.device = device
253
+ self.max_length = max_length
254
+ if freeze:
255
+ self.freeze()
256
+ self.layer = layer
257
+ if self.layer == "penultimate":
258
+ raise NotImplementedError()
259
+ self.layer_idx = 1
260
+
261
+ self.antialias = antialias
262
+
263
+ self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
264
+ self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
265
+ self.ucg_rate = ucg_rate
266
+
267
+ def preprocess(self, x):
268
+ # normalize to [0,1]
269
+ x = kornia.geometry.resize(x, (224, 224),
270
+ interpolation='bicubic', align_corners=True,
271
+ antialias=self.antialias)
272
+ x = (x + 1.) / 2.
273
+ # renormalize according to clip
274
+ x = kornia.enhance.normalize(x, self.mean, self.std)
275
+ return x
276
+
277
+ def freeze(self):
278
+ self.model = self.model.eval()
279
+ for param in self.parameters():
280
+ param.requires_grad = False
281
+
282
+ @autocast
283
+ def forward(self, image, no_dropout=False):
284
+ z = self.encode_with_vision_transformer(image)
285
+ if self.ucg_rate > 0. and not no_dropout:
286
+ z = torch.bernoulli((1. - self.ucg_rate) * torch.ones(z.shape[0], device=z.device))[:, None] * z
287
+ return z
288
+
289
+ def encode_with_vision_transformer(self, img):
290
+ img = self.preprocess(img)
291
+ x = self.model.visual(img)
292
+ return x
293
+
294
+ def encode(self, text):
295
+ return self(text)
296
+
297
+
298
+
299
+ class FrozenOpenCLIPImageEmbedderV2(AbstractEncoder):
300
+ """
301
+ Uses the OpenCLIP vision transformer encoder for images
302
+ """
303
+
304
+ def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda",
305
+ freeze=True, layer="pooled", antialias=True):
306
+ super().__init__()
307
+ model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'),
308
+ pretrained=version, )
309
+ del model.transformer
310
+ self.model = model
311
+ self.device = device
312
+
313
+ if freeze:
314
+ self.freeze()
315
+ self.layer = layer
316
+ if self.layer == "penultimate":
317
+ raise NotImplementedError()
318
+ self.layer_idx = 1
319
+
320
+ self.antialias = antialias
321
+ self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
322
+ self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
323
+
324
+
325
+ def preprocess(self, x):
326
+ # normalize to [0,1]
327
+ x = kornia.geometry.resize(x, (224, 224),
328
+ interpolation='bicubic', align_corners=True,
329
+ antialias=self.antialias)
330
+ x = (x + 1.) / 2.
331
+ # renormalize according to clip
332
+ x = kornia.enhance.normalize(x, self.mean, self.std)
333
+ return x
334
+
335
+ def freeze(self):
336
+ self.model = self.model.eval()
337
+ for param in self.model.parameters():
338
+ param.requires_grad = False
339
+
340
+ def forward(self, image, no_dropout=False):
341
+ ## image: b c h w
342
+ z = self.encode_with_vision_transformer(image)
343
+ return z
344
+
345
+ def encode_with_vision_transformer(self, x):
346
+ x = self.preprocess(x)
347
+
348
+ # to patches - whether to use dual patchnorm - https://arxiv.org/abs/2302.01327v1
349
+ if self.model.visual.input_patchnorm:
350
+ # einops - rearrange(x, 'b c (h p1) (w p2) -> b (h w) (c p1 p2)')
351
+ x = x.reshape(x.shape[0], x.shape[1], self.model.visual.grid_size[0], self.model.visual.patch_size[0], self.model.visual.grid_size[1], self.model.visual.patch_size[1])
352
+ x = x.permute(0, 2, 4, 1, 3, 5)
353
+ x = x.reshape(x.shape[0], self.model.visual.grid_size[0] * self.model.visual.grid_size[1], -1)
354
+ x = self.model.visual.patchnorm_pre_ln(x)
355
+ x = self.model.visual.conv1(x)
356
+ else:
357
+ x = self.model.visual.conv1(x) # shape = [*, width, grid, grid]
358
+ x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
359
+ x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
360
+
361
+ # class embeddings and positional embeddings
362
+ x = torch.cat(
363
+ [self.model.visual.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device),
364
+ x], dim=1) # shape = [*, grid ** 2 + 1, width]
365
+ x = x + self.model.visual.positional_embedding.to(x.dtype)
366
+
367
+ # a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in
368
+ x = self.model.visual.patch_dropout(x)
369
+ x = self.model.visual.ln_pre(x)
370
+
371
+ x = x.permute(1, 0, 2) # NLD -> LND
372
+ x = self.model.visual.transformer(x)
373
+ x = x.permute(1, 0, 2) # LND -> NLD
374
+
375
+ return x
376
+
377
+
378
+ class FrozenCLIPT5Encoder(AbstractEncoder):
379
+ def __init__(self, clip_version="openai/clip-vit-large-patch14", t5_version="google/t5-v1_1-xl", device="cuda",
380
+ clip_max_length=77, t5_max_length=77):
381
+ super().__init__()
382
+ self.clip_encoder = FrozenCLIPEmbedder(clip_version, device, max_length=clip_max_length)
383
+ self.t5_encoder = FrozenT5Embedder(t5_version, device, max_length=t5_max_length)
384
+ print(f"{self.clip_encoder.__class__.__name__} has {count_params(self.clip_encoder) * 1.e-6:.2f} M parameters, "
385
+ f"{self.t5_encoder.__class__.__name__} comes with {count_params(self.t5_encoder) * 1.e-6:.2f} M params.")
386
+
387
+ def encode(self, text):
388
+ return self(text)
389
+
390
+ def forward(self, text):
391
+ clip_z = self.clip_encoder.encode(text)
392
+ t5_z = self.t5_encoder.encode(text)
393
+ return [clip_z, t5_z]
VADER-VideoCrafter/lvdm/modules/encoders/ip_resampler.py ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copied from VideoCrafter: https://github.com/AILab-CVC/VideoCrafter
2
+ # modified from https://github.com/mlfoundations/open_flamingo/blob/main/open_flamingo/src/helpers.py
3
+ import math
4
+ import torch
5
+ import torch.nn as nn
6
+
7
+
8
+ class ImageProjModel(nn.Module):
9
+ """Projection Model"""
10
+ def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4):
11
+ super().__init__()
12
+ self.cross_attention_dim = cross_attention_dim
13
+ self.clip_extra_context_tokens = clip_extra_context_tokens
14
+ self.proj = nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim)
15
+ self.norm = nn.LayerNorm(cross_attention_dim)
16
+
17
+ def forward(self, image_embeds):
18
+ #embeds = image_embeds
19
+ embeds = image_embeds.type(list(self.proj.parameters())[0].dtype)
20
+ clip_extra_context_tokens = self.proj(embeds).reshape(-1, self.clip_extra_context_tokens, self.cross_attention_dim)
21
+ clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
22
+ return clip_extra_context_tokens
23
+
24
+ # FFN
25
+ def FeedForward(dim, mult=4):
26
+ inner_dim = int(dim * mult)
27
+ return nn.Sequential(
28
+ nn.LayerNorm(dim),
29
+ nn.Linear(dim, inner_dim, bias=False),
30
+ nn.GELU(),
31
+ nn.Linear(inner_dim, dim, bias=False),
32
+ )
33
+
34
+
35
+ def reshape_tensor(x, heads):
36
+ bs, length, width = x.shape
37
+ #(bs, length, width) --> (bs, length, n_heads, dim_per_head)
38
+ x = x.view(bs, length, heads, -1)
39
+ # (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
40
+ x = x.transpose(1, 2)
41
+ # (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
42
+ x = x.reshape(bs, heads, length, -1)
43
+ return x
44
+
45
+
46
+ class PerceiverAttention(nn.Module):
47
+ def __init__(self, *, dim, dim_head=64, heads=8):
48
+ super().__init__()
49
+ self.scale = dim_head**-0.5
50
+ self.dim_head = dim_head
51
+ self.heads = heads
52
+ inner_dim = dim_head * heads
53
+
54
+ self.norm1 = nn.LayerNorm(dim)
55
+ self.norm2 = nn.LayerNorm(dim)
56
+
57
+ self.to_q = nn.Linear(dim, inner_dim, bias=False)
58
+ self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
59
+ self.to_out = nn.Linear(inner_dim, dim, bias=False)
60
+
61
+
62
+ def forward(self, x, latents):
63
+ """
64
+ Args:
65
+ x (torch.Tensor): image features
66
+ shape (b, n1, D)
67
+ latent (torch.Tensor): latent features
68
+ shape (b, n2, D)
69
+ """
70
+ x = self.norm1(x)
71
+ latents = self.norm2(latents)
72
+
73
+ b, l, _ = latents.shape
74
+
75
+ q = self.to_q(latents)
76
+ kv_input = torch.cat((x, latents), dim=-2)
77
+ k, v = self.to_kv(kv_input).chunk(2, dim=-1)
78
+
79
+ q = reshape_tensor(q, self.heads)
80
+ k = reshape_tensor(k, self.heads)
81
+ v = reshape_tensor(v, self.heads)
82
+
83
+ # attention
84
+ scale = 1 / math.sqrt(math.sqrt(self.dim_head))
85
+ weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
86
+ weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
87
+ out = weight @ v
88
+
89
+ out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
90
+
91
+ return self.to_out(out)
92
+
93
+
94
+ class Resampler(nn.Module):
95
+ def __init__(
96
+ self,
97
+ dim=1024,
98
+ depth=8,
99
+ dim_head=64,
100
+ heads=16,
101
+ num_queries=8,
102
+ embedding_dim=768,
103
+ output_dim=1024,
104
+ ff_mult=4,
105
+ ):
106
+ super().__init__()
107
+
108
+ self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
109
+
110
+ self.proj_in = nn.Linear(embedding_dim, dim)
111
+
112
+ self.proj_out = nn.Linear(dim, output_dim)
113
+ self.norm_out = nn.LayerNorm(output_dim)
114
+
115
+ self.layers = nn.ModuleList([])
116
+ for _ in range(depth):
117
+ self.layers.append(
118
+ nn.ModuleList(
119
+ [
120
+ PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
121
+ FeedForward(dim=dim, mult=ff_mult),
122
+ ]
123
+ )
124
+ )
125
+
126
+ def forward(self, x):
127
+
128
+ latents = self.latents.repeat(x.size(0), 1, 1)
129
+
130
+ x = self.proj_in(x)
131
+
132
+ for attn, ff in self.layers:
133
+ latents = attn(x, latents) + latents
134
+ latents = ff(latents) + latents
135
+
136
+ latents = self.proj_out(latents)
137
+ return self.norm_out(latents)
VADER-VideoCrafter/lvdm/modules/networks/ae_modules.py ADDED
@@ -0,0 +1,846 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copied from VideoCrafter: https://github.com/AILab-CVC/VideoCrafter
2
+ # pytorch_diffusion + derived encoder decoder
3
+ import math
4
+ import torch
5
+ import numpy as np
6
+ import torch.nn as nn
7
+ from einops import rearrange
8
+ from utils.utils import instantiate_from_config
9
+ from lvdm.modules.attention import LinearAttention
10
+
11
+ def nonlinearity(x):
12
+ # swish
13
+ return x*torch.sigmoid(x)
14
+
15
+
16
+ def Normalize(in_channels, num_groups=32):
17
+ return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
18
+
19
+
20
+
21
+ class LinAttnBlock(LinearAttention):
22
+ """to match AttnBlock usage"""
23
+ def __init__(self, in_channels):
24
+ super().__init__(dim=in_channels, heads=1, dim_head=in_channels)
25
+
26
+
27
+ class AttnBlock(nn.Module):
28
+ def __init__(self, in_channels):
29
+ super().__init__()
30
+ self.in_channels = in_channels
31
+
32
+ self.norm = Normalize(in_channels)
33
+ self.q = torch.nn.Conv2d(in_channels,
34
+ in_channels,
35
+ kernel_size=1,
36
+ stride=1,
37
+ padding=0)
38
+ self.k = torch.nn.Conv2d(in_channels,
39
+ in_channels,
40
+ kernel_size=1,
41
+ stride=1,
42
+ padding=0)
43
+ self.v = torch.nn.Conv2d(in_channels,
44
+ in_channels,
45
+ kernel_size=1,
46
+ stride=1,
47
+ padding=0)
48
+ self.proj_out = torch.nn.Conv2d(in_channels,
49
+ in_channels,
50
+ kernel_size=1,
51
+ stride=1,
52
+ padding=0)
53
+
54
+ def forward(self, x):
55
+ h_ = x
56
+ h_ = self.norm(h_)
57
+ q = self.q(h_)
58
+ k = self.k(h_)
59
+ v = self.v(h_)
60
+
61
+ # compute attention
62
+ b,c,h,w = q.shape
63
+ q = q.reshape(b,c,h*w) # bcl
64
+ q = q.permute(0,2,1) # bcl -> blc l=hw
65
+ k = k.reshape(b,c,h*w) # bcl
66
+
67
+ w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
68
+ w_ = w_ * (int(c)**(-0.5))
69
+ w_ = torch.nn.functional.softmax(w_, dim=2)
70
+
71
+ # attend to values
72
+ v = v.reshape(b,c,h*w)
73
+ w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q)
74
+ h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
75
+ h_ = h_.reshape(b,c,h,w)
76
+
77
+ h_ = self.proj_out(h_)
78
+
79
+ return x+h_
80
+
81
+ def make_attn(in_channels, attn_type="vanilla"):
82
+ assert attn_type in ["vanilla", "linear", "none"], f'attn_type {attn_type} unknown'
83
+ #print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
84
+ if attn_type == "vanilla":
85
+ return AttnBlock(in_channels)
86
+ elif attn_type == "none":
87
+ return nn.Identity(in_channels)
88
+ else:
89
+ return LinAttnBlock(in_channels)
90
+
91
+ class Downsample(nn.Module):
92
+ def __init__(self, in_channels, with_conv):
93
+ super().__init__()
94
+ self.with_conv = with_conv
95
+ self.in_channels = in_channels
96
+ if self.with_conv:
97
+ # no asymmetric padding in torch conv, must do it ourselves
98
+ self.conv = torch.nn.Conv2d(in_channels,
99
+ in_channels,
100
+ kernel_size=3,
101
+ stride=2,
102
+ padding=0)
103
+ def forward(self, x):
104
+ if self.with_conv:
105
+ pad = (0,1,0,1)
106
+ x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
107
+ x = self.conv(x)
108
+ else:
109
+ x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
110
+ return x
111
+
112
+ class Upsample(nn.Module):
113
+ def __init__(self, in_channels, with_conv):
114
+ super().__init__()
115
+ self.with_conv = with_conv
116
+ self.in_channels = in_channels
117
+ if self.with_conv:
118
+ self.conv = torch.nn.Conv2d(in_channels,
119
+ in_channels,
120
+ kernel_size=3,
121
+ stride=1,
122
+ padding=1)
123
+
124
+ def forward(self, x):
125
+ x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
126
+ if self.with_conv:
127
+ x = self.conv(x)
128
+ return x
129
+
130
+ def get_timestep_embedding(timesteps, embedding_dim):
131
+ """
132
+ This matches the implementation in Denoising Diffusion Probabilistic Models:
133
+ From Fairseq.
134
+ Build sinusoidal embeddings.
135
+ This matches the implementation in tensor2tensor, but differs slightly
136
+ from the description in Section 3.5 of "Attention Is All You Need".
137
+ """
138
+ assert len(timesteps.shape) == 1
139
+
140
+ half_dim = embedding_dim // 2
141
+ emb = math.log(10000) / (half_dim - 1)
142
+ emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
143
+ emb = emb.to(device=timesteps.device)
144
+ emb = timesteps.float()[:, None] * emb[None, :]
145
+ emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
146
+ if embedding_dim % 2 == 1: # zero pad
147
+ emb = torch.nn.functional.pad(emb, (0,1,0,0))
148
+ return emb
149
+
150
+
151
+
152
+ class ResnetBlock(nn.Module):
153
+ def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
154
+ dropout, temb_channels=512):
155
+ super().__init__()
156
+ self.in_channels = in_channels
157
+ out_channels = in_channels if out_channels is None else out_channels
158
+ self.out_channels = out_channels
159
+ self.use_conv_shortcut = conv_shortcut
160
+
161
+ self.norm1 = Normalize(in_channels)
162
+ self.conv1 = torch.nn.Conv2d(in_channels,
163
+ out_channels,
164
+ kernel_size=3,
165
+ stride=1,
166
+ padding=1)
167
+ if temb_channels > 0:
168
+ self.temb_proj = torch.nn.Linear(temb_channels,
169
+ out_channels)
170
+ self.norm2 = Normalize(out_channels)
171
+ self.dropout = torch.nn.Dropout(dropout)
172
+ self.conv2 = torch.nn.Conv2d(out_channels,
173
+ out_channels,
174
+ kernel_size=3,
175
+ stride=1,
176
+ padding=1)
177
+ if self.in_channels != self.out_channels:
178
+ if self.use_conv_shortcut:
179
+ self.conv_shortcut = torch.nn.Conv2d(in_channels,
180
+ out_channels,
181
+ kernel_size=3,
182
+ stride=1,
183
+ padding=1)
184
+ else:
185
+ self.nin_shortcut = torch.nn.Conv2d(in_channels,
186
+ out_channels,
187
+ kernel_size=1,
188
+ stride=1,
189
+ padding=0)
190
+
191
+ def forward(self, x, temb):
192
+ h = x
193
+ h = self.norm1(h)
194
+ h = nonlinearity(h)
195
+ h = self.conv1(h)
196
+
197
+ if temb is not None:
198
+ h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
199
+
200
+ h = self.norm2(h)
201
+ h = nonlinearity(h)
202
+ h = self.dropout(h)
203
+ h = self.conv2(h)
204
+
205
+ if self.in_channels != self.out_channels:
206
+ if self.use_conv_shortcut:
207
+ x = self.conv_shortcut(x)
208
+ else:
209
+ x = self.nin_shortcut(x)
210
+
211
+ return x+h
212
+
213
+ class Model(nn.Module):
214
+ def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
215
+ attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
216
+ resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
217
+ super().__init__()
218
+ if use_linear_attn: attn_type = "linear"
219
+ self.ch = ch
220
+ self.temb_ch = self.ch*4
221
+ self.num_resolutions = len(ch_mult)
222
+ self.num_res_blocks = num_res_blocks
223
+ self.resolution = resolution
224
+ self.in_channels = in_channels
225
+
226
+ self.use_timestep = use_timestep
227
+ if self.use_timestep:
228
+ # timestep embedding
229
+ self.temb = nn.Module()
230
+ self.temb.dense = nn.ModuleList([
231
+ torch.nn.Linear(self.ch,
232
+ self.temb_ch),
233
+ torch.nn.Linear(self.temb_ch,
234
+ self.temb_ch),
235
+ ])
236
+
237
+ # downsampling
238
+ self.conv_in = torch.nn.Conv2d(in_channels,
239
+ self.ch,
240
+ kernel_size=3,
241
+ stride=1,
242
+ padding=1)
243
+
244
+ curr_res = resolution
245
+ in_ch_mult = (1,)+tuple(ch_mult)
246
+ self.down = nn.ModuleList()
247
+ for i_level in range(self.num_resolutions):
248
+ block = nn.ModuleList()
249
+ attn = nn.ModuleList()
250
+ block_in = ch*in_ch_mult[i_level]
251
+ block_out = ch*ch_mult[i_level]
252
+ for i_block in range(self.num_res_blocks):
253
+ block.append(ResnetBlock(in_channels=block_in,
254
+ out_channels=block_out,
255
+ temb_channels=self.temb_ch,
256
+ dropout=dropout))
257
+ block_in = block_out
258
+ if curr_res in attn_resolutions:
259
+ attn.append(make_attn(block_in, attn_type=attn_type))
260
+ down = nn.Module()
261
+ down.block = block
262
+ down.attn = attn
263
+ if i_level != self.num_resolutions-1:
264
+ down.downsample = Downsample(block_in, resamp_with_conv)
265
+ curr_res = curr_res // 2
266
+ self.down.append(down)
267
+
268
+ # middle
269
+ self.mid = nn.Module()
270
+ self.mid.block_1 = ResnetBlock(in_channels=block_in,
271
+ out_channels=block_in,
272
+ temb_channels=self.temb_ch,
273
+ dropout=dropout)
274
+ self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
275
+ self.mid.block_2 = ResnetBlock(in_channels=block_in,
276
+ out_channels=block_in,
277
+ temb_channels=self.temb_ch,
278
+ dropout=dropout)
279
+
280
+ # upsampling
281
+ self.up = nn.ModuleList()
282
+ for i_level in reversed(range(self.num_resolutions)):
283
+ block = nn.ModuleList()
284
+ attn = nn.ModuleList()
285
+ block_out = ch*ch_mult[i_level]
286
+ skip_in = ch*ch_mult[i_level]
287
+ for i_block in range(self.num_res_blocks+1):
288
+ if i_block == self.num_res_blocks:
289
+ skip_in = ch*in_ch_mult[i_level]
290
+ block.append(ResnetBlock(in_channels=block_in+skip_in,
291
+ out_channels=block_out,
292
+ temb_channels=self.temb_ch,
293
+ dropout=dropout))
294
+ block_in = block_out
295
+ if curr_res in attn_resolutions:
296
+ attn.append(make_attn(block_in, attn_type=attn_type))
297
+ up = nn.Module()
298
+ up.block = block
299
+ up.attn = attn
300
+ if i_level != 0:
301
+ up.upsample = Upsample(block_in, resamp_with_conv)
302
+ curr_res = curr_res * 2
303
+ self.up.insert(0, up) # prepend to get consistent order
304
+
305
+ # end
306
+ self.norm_out = Normalize(block_in)
307
+ self.conv_out = torch.nn.Conv2d(block_in,
308
+ out_ch,
309
+ kernel_size=3,
310
+ stride=1,
311
+ padding=1)
312
+
313
+ def forward(self, x, t=None, context=None):
314
+ #assert x.shape[2] == x.shape[3] == self.resolution
315
+ if context is not None:
316
+ # assume aligned context, cat along channel axis
317
+ x = torch.cat((x, context), dim=1)
318
+ if self.use_timestep:
319
+ # timestep embedding
320
+ assert t is not None
321
+ temb = get_timestep_embedding(t, self.ch)
322
+ temb = self.temb.dense[0](temb)
323
+ temb = nonlinearity(temb)
324
+ temb = self.temb.dense[1](temb)
325
+ else:
326
+ temb = None
327
+
328
+ # downsampling
329
+ hs = [self.conv_in(x)]
330
+ for i_level in range(self.num_resolutions):
331
+ for i_block in range(self.num_res_blocks):
332
+ h = self.down[i_level].block[i_block](hs[-1], temb)
333
+ if len(self.down[i_level].attn) > 0:
334
+ h = self.down[i_level].attn[i_block](h)
335
+ hs.append(h)
336
+ if i_level != self.num_resolutions-1:
337
+ hs.append(self.down[i_level].downsample(hs[-1]))
338
+
339
+ # middle
340
+ h = hs[-1]
341
+ h = self.mid.block_1(h, temb)
342
+ h = self.mid.attn_1(h)
343
+ h = self.mid.block_2(h, temb)
344
+
345
+ # upsampling
346
+ for i_level in reversed(range(self.num_resolutions)):
347
+ for i_block in range(self.num_res_blocks+1):
348
+ h = self.up[i_level].block[i_block](
349
+ torch.cat([h, hs.pop()], dim=1), temb)
350
+ if len(self.up[i_level].attn) > 0:
351
+ h = self.up[i_level].attn[i_block](h)
352
+ if i_level != 0:
353
+ h = self.up[i_level].upsample(h)
354
+
355
+ # end
356
+ h = self.norm_out(h)
357
+ h = nonlinearity(h)
358
+ h = self.conv_out(h)
359
+ return h
360
+
361
+ def get_last_layer(self):
362
+ return self.conv_out.weight
363
+
364
+
365
+ class Encoder(nn.Module):
366
+ def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
367
+ attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
368
+ resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
369
+ **ignore_kwargs):
370
+ super().__init__()
371
+ if use_linear_attn: attn_type = "linear"
372
+ self.ch = ch
373
+ self.temb_ch = 0
374
+ self.num_resolutions = len(ch_mult)
375
+ self.num_res_blocks = num_res_blocks
376
+ self.resolution = resolution
377
+ self.in_channels = in_channels
378
+
379
+ # downsampling
380
+ self.conv_in = torch.nn.Conv2d(in_channels,
381
+ self.ch,
382
+ kernel_size=3,
383
+ stride=1,
384
+ padding=1)
385
+
386
+ curr_res = resolution
387
+ in_ch_mult = (1,)+tuple(ch_mult)
388
+ self.in_ch_mult = in_ch_mult
389
+ self.down = nn.ModuleList()
390
+ for i_level in range(self.num_resolutions):
391
+ block = nn.ModuleList()
392
+ attn = nn.ModuleList()
393
+ block_in = ch*in_ch_mult[i_level]
394
+ block_out = ch*ch_mult[i_level]
395
+ for i_block in range(self.num_res_blocks):
396
+ block.append(ResnetBlock(in_channels=block_in,
397
+ out_channels=block_out,
398
+ temb_channels=self.temb_ch,
399
+ dropout=dropout))
400
+ block_in = block_out
401
+ if curr_res in attn_resolutions:
402
+ attn.append(make_attn(block_in, attn_type=attn_type))
403
+ down = nn.Module()
404
+ down.block = block
405
+ down.attn = attn
406
+ if i_level != self.num_resolutions-1:
407
+ down.downsample = Downsample(block_in, resamp_with_conv)
408
+ curr_res = curr_res // 2
409
+ self.down.append(down)
410
+
411
+ # middle
412
+ self.mid = nn.Module()
413
+ self.mid.block_1 = ResnetBlock(in_channels=block_in,
414
+ out_channels=block_in,
415
+ temb_channels=self.temb_ch,
416
+ dropout=dropout)
417
+ self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
418
+ self.mid.block_2 = ResnetBlock(in_channels=block_in,
419
+ out_channels=block_in,
420
+ temb_channels=self.temb_ch,
421
+ dropout=dropout)
422
+
423
+ # end
424
+ self.norm_out = Normalize(block_in)
425
+ self.conv_out = torch.nn.Conv2d(block_in,
426
+ 2*z_channels if double_z else z_channels,
427
+ kernel_size=3,
428
+ stride=1,
429
+ padding=1)
430
+
431
+ def forward(self, x):
432
+ # timestep embedding
433
+ temb = None
434
+
435
+ # print(f'encoder-input={x.shape}')
436
+ # downsampling
437
+ hs = [self.conv_in(x)]
438
+ # print(f'encoder-conv in feat={hs[0].shape}')
439
+ for i_level in range(self.num_resolutions):
440
+ for i_block in range(self.num_res_blocks):
441
+ h = self.down[i_level].block[i_block](hs[-1], temb)
442
+ # print(f'encoder-down feat={h.shape}')
443
+ if len(self.down[i_level].attn) > 0:
444
+ h = self.down[i_level].attn[i_block](h)
445
+ hs.append(h)
446
+ if i_level != self.num_resolutions-1:
447
+ # print(f'encoder-downsample (input)={hs[-1].shape}')
448
+ hs.append(self.down[i_level].downsample(hs[-1]))
449
+ # print(f'encoder-downsample (output)={hs[-1].shape}')
450
+
451
+ # middle
452
+ h = hs[-1]
453
+ h = self.mid.block_1(h, temb)
454
+ # print(f'encoder-mid1 feat={h.shape}')
455
+ h = self.mid.attn_1(h)
456
+ h = self.mid.block_2(h, temb)
457
+ # print(f'encoder-mid2 feat={h.shape}')
458
+
459
+ # end
460
+ h = self.norm_out(h)
461
+ h = nonlinearity(h)
462
+ h = self.conv_out(h)
463
+ # print(f'end feat={h.shape}')
464
+ return h
465
+
466
+
467
+ class Decoder(nn.Module):
468
+ def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
469
+ attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
470
+ resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
471
+ attn_type="vanilla", **ignorekwargs):
472
+ super().__init__()
473
+ if use_linear_attn: attn_type = "linear"
474
+ self.ch = ch
475
+ self.temb_ch = 0
476
+ self.num_resolutions = len(ch_mult)
477
+ self.num_res_blocks = num_res_blocks
478
+ self.resolution = resolution
479
+ self.in_channels = in_channels
480
+ self.give_pre_end = give_pre_end
481
+ self.tanh_out = tanh_out
482
+
483
+ # compute in_ch_mult, block_in and curr_res at lowest res
484
+ in_ch_mult = (1,)+tuple(ch_mult)
485
+ block_in = ch*ch_mult[self.num_resolutions-1]
486
+ curr_res = resolution // 2**(self.num_resolutions-1)
487
+ self.z_shape = (1,z_channels,curr_res,curr_res)
488
+ print("AE working on z of shape {} = {} dimensions.".format(
489
+ self.z_shape, np.prod(self.z_shape)))
490
+
491
+ # z to block_in
492
+ self.conv_in = torch.nn.Conv2d(z_channels,
493
+ block_in,
494
+ kernel_size=3,
495
+ stride=1,
496
+ padding=1)
497
+
498
+ # middle
499
+ self.mid = nn.Module()
500
+ self.mid.block_1 = ResnetBlock(in_channels=block_in,
501
+ out_channels=block_in,
502
+ temb_channels=self.temb_ch,
503
+ dropout=dropout)
504
+ self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
505
+ self.mid.block_2 = ResnetBlock(in_channels=block_in,
506
+ out_channels=block_in,
507
+ temb_channels=self.temb_ch,
508
+ dropout=dropout)
509
+
510
+ # upsampling
511
+ self.up = nn.ModuleList()
512
+ for i_level in reversed(range(self.num_resolutions)):
513
+ block = nn.ModuleList()
514
+ attn = nn.ModuleList()
515
+ block_out = ch*ch_mult[i_level]
516
+ for i_block in range(self.num_res_blocks+1):
517
+ block.append(ResnetBlock(in_channels=block_in,
518
+ out_channels=block_out,
519
+ temb_channels=self.temb_ch,
520
+ dropout=dropout))
521
+ block_in = block_out
522
+ if curr_res in attn_resolutions:
523
+ attn.append(make_attn(block_in, attn_type=attn_type))
524
+ up = nn.Module()
525
+ up.block = block
526
+ up.attn = attn
527
+ if i_level != 0:
528
+ up.upsample = Upsample(block_in, resamp_with_conv)
529
+ curr_res = curr_res * 2
530
+ self.up.insert(0, up) # prepend to get consistent order
531
+
532
+ # end
533
+ self.norm_out = Normalize(block_in)
534
+ self.conv_out = torch.nn.Conv2d(block_in,
535
+ out_ch,
536
+ kernel_size=3,
537
+ stride=1,
538
+ padding=1)
539
+
540
+ def forward(self, z):
541
+ #assert z.shape[1:] == self.z_shape[1:]
542
+ self.last_z_shape = z.shape
543
+
544
+ # print(f'decoder-input={z.shape}')
545
+ # timestep embedding
546
+ temb = None
547
+
548
+ # z to block_in
549
+ h = self.conv_in(z)
550
+ # print(f'decoder-conv in feat={h.shape}')
551
+
552
+ # middle
553
+ h = self.mid.block_1(h, temb)
554
+ h = self.mid.attn_1(h)
555
+ h = self.mid.block_2(h, temb)
556
+ # print(f'decoder-mid feat={h.shape}')
557
+
558
+ # upsampling
559
+ for i_level in reversed(range(self.num_resolutions)):
560
+ for i_block in range(self.num_res_blocks+1):
561
+ h = self.up[i_level].block[i_block](h, temb)
562
+ if len(self.up[i_level].attn) > 0:
563
+ h = self.up[i_level].attn[i_block](h)
564
+ # print(f'decoder-up feat={h.shape}')
565
+ if i_level != 0:
566
+ h = self.up[i_level].upsample(h)
567
+ # print(f'decoder-upsample feat={h.shape}')
568
+
569
+ # end
570
+ if self.give_pre_end:
571
+ return h
572
+
573
+ h = self.norm_out(h)
574
+ h = nonlinearity(h)
575
+ h = self.conv_out(h)
576
+ # print(f'decoder-conv_out feat={h.shape}')
577
+ if self.tanh_out:
578
+ h = torch.tanh(h)
579
+ return h
580
+
581
+
582
+ class SimpleDecoder(nn.Module):
583
+ def __init__(self, in_channels, out_channels, *args, **kwargs):
584
+ super().__init__()
585
+ self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1),
586
+ ResnetBlock(in_channels=in_channels,
587
+ out_channels=2 * in_channels,
588
+ temb_channels=0, dropout=0.0),
589
+ ResnetBlock(in_channels=2 * in_channels,
590
+ out_channels=4 * in_channels,
591
+ temb_channels=0, dropout=0.0),
592
+ ResnetBlock(in_channels=4 * in_channels,
593
+ out_channels=2 * in_channels,
594
+ temb_channels=0, dropout=0.0),
595
+ nn.Conv2d(2*in_channels, in_channels, 1),
596
+ Upsample(in_channels, with_conv=True)])
597
+ # end
598
+ self.norm_out = Normalize(in_channels)
599
+ self.conv_out = torch.nn.Conv2d(in_channels,
600
+ out_channels,
601
+ kernel_size=3,
602
+ stride=1,
603
+ padding=1)
604
+
605
+ def forward(self, x):
606
+ for i, layer in enumerate(self.model):
607
+ if i in [1,2,3]:
608
+ x = layer(x, None)
609
+ else:
610
+ x = layer(x)
611
+
612
+ h = self.norm_out(x)
613
+ h = nonlinearity(h)
614
+ x = self.conv_out(h)
615
+ return x
616
+
617
+
618
+ class UpsampleDecoder(nn.Module):
619
+ def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution,
620
+ ch_mult=(2,2), dropout=0.0):
621
+ super().__init__()
622
+ # upsampling
623
+ self.temb_ch = 0
624
+ self.num_resolutions = len(ch_mult)
625
+ self.num_res_blocks = num_res_blocks
626
+ block_in = in_channels
627
+ curr_res = resolution // 2 ** (self.num_resolutions - 1)
628
+ self.res_blocks = nn.ModuleList()
629
+ self.upsample_blocks = nn.ModuleList()
630
+ for i_level in range(self.num_resolutions):
631
+ res_block = []
632
+ block_out = ch * ch_mult[i_level]
633
+ for i_block in range(self.num_res_blocks + 1):
634
+ res_block.append(ResnetBlock(in_channels=block_in,
635
+ out_channels=block_out,
636
+ temb_channels=self.temb_ch,
637
+ dropout=dropout))
638
+ block_in = block_out
639
+ self.res_blocks.append(nn.ModuleList(res_block))
640
+ if i_level != self.num_resolutions - 1:
641
+ self.upsample_blocks.append(Upsample(block_in, True))
642
+ curr_res = curr_res * 2
643
+
644
+ # end
645
+ self.norm_out = Normalize(block_in)
646
+ self.conv_out = torch.nn.Conv2d(block_in,
647
+ out_channels,
648
+ kernel_size=3,
649
+ stride=1,
650
+ padding=1)
651
+
652
+ def forward(self, x):
653
+ # upsampling
654
+ h = x
655
+ for k, i_level in enumerate(range(self.num_resolutions)):
656
+ for i_block in range(self.num_res_blocks + 1):
657
+ h = self.res_blocks[i_level][i_block](h, None)
658
+ if i_level != self.num_resolutions - 1:
659
+ h = self.upsample_blocks[k](h)
660
+ h = self.norm_out(h)
661
+ h = nonlinearity(h)
662
+ h = self.conv_out(h)
663
+ return h
664
+
665
+
666
+ class LatentRescaler(nn.Module):
667
+ def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
668
+ super().__init__()
669
+ # residual block, interpolate, residual block
670
+ self.factor = factor
671
+ self.conv_in = nn.Conv2d(in_channels,
672
+ mid_channels,
673
+ kernel_size=3,
674
+ stride=1,
675
+ padding=1)
676
+ self.res_block1 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
677
+ out_channels=mid_channels,
678
+ temb_channels=0,
679
+ dropout=0.0) for _ in range(depth)])
680
+ self.attn = AttnBlock(mid_channels)
681
+ self.res_block2 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
682
+ out_channels=mid_channels,
683
+ temb_channels=0,
684
+ dropout=0.0) for _ in range(depth)])
685
+
686
+ self.conv_out = nn.Conv2d(mid_channels,
687
+ out_channels,
688
+ kernel_size=1,
689
+ )
690
+
691
+ def forward(self, x):
692
+ x = self.conv_in(x)
693
+ for block in self.res_block1:
694
+ x = block(x, None)
695
+ x = torch.nn.functional.interpolate(x, size=(int(round(x.shape[2]*self.factor)), int(round(x.shape[3]*self.factor))))
696
+ x = self.attn(x)
697
+ for block in self.res_block2:
698
+ x = block(x, None)
699
+ x = self.conv_out(x)
700
+ return x
701
+
702
+
703
+ class MergedRescaleEncoder(nn.Module):
704
+ def __init__(self, in_channels, ch, resolution, out_ch, num_res_blocks,
705
+ attn_resolutions, dropout=0.0, resamp_with_conv=True,
706
+ ch_mult=(1,2,4,8), rescale_factor=1.0, rescale_module_depth=1):
707
+ super().__init__()
708
+ intermediate_chn = ch * ch_mult[-1]
709
+ self.encoder = Encoder(in_channels=in_channels, num_res_blocks=num_res_blocks, ch=ch, ch_mult=ch_mult,
710
+ z_channels=intermediate_chn, double_z=False, resolution=resolution,
711
+ attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv,
712
+ out_ch=None)
713
+ self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=intermediate_chn,
714
+ mid_channels=intermediate_chn, out_channels=out_ch, depth=rescale_module_depth)
715
+
716
+ def forward(self, x):
717
+ x = self.encoder(x)
718
+ x = self.rescaler(x)
719
+ return x
720
+
721
+
722
+ class MergedRescaleDecoder(nn.Module):
723
+ def __init__(self, z_channels, out_ch, resolution, num_res_blocks, attn_resolutions, ch, ch_mult=(1,2,4,8),
724
+ dropout=0.0, resamp_with_conv=True, rescale_factor=1.0, rescale_module_depth=1):
725
+ super().__init__()
726
+ tmp_chn = z_channels*ch_mult[-1]
727
+ self.decoder = Decoder(out_ch=out_ch, z_channels=tmp_chn, attn_resolutions=attn_resolutions, dropout=dropout,
728
+ resamp_with_conv=resamp_with_conv, in_channels=None, num_res_blocks=num_res_blocks,
729
+ ch_mult=ch_mult, resolution=resolution, ch=ch)
730
+ self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=z_channels, mid_channels=tmp_chn,
731
+ out_channels=tmp_chn, depth=rescale_module_depth)
732
+
733
+ def forward(self, x):
734
+ x = self.rescaler(x)
735
+ x = self.decoder(x)
736
+ return x
737
+
738
+
739
+ class Upsampler(nn.Module):
740
+ def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
741
+ super().__init__()
742
+ assert out_size >= in_size
743
+ num_blocks = int(np.log2(out_size//in_size))+1
744
+ factor_up = 1.+ (out_size % in_size)
745
+ print(f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}")
746
+ self.rescaler = LatentRescaler(factor=factor_up, in_channels=in_channels, mid_channels=2*in_channels,
747
+ out_channels=in_channels)
748
+ self.decoder = Decoder(out_ch=out_channels, resolution=out_size, z_channels=in_channels, num_res_blocks=2,
749
+ attn_resolutions=[], in_channels=None, ch=in_channels,
750
+ ch_mult=[ch_mult for _ in range(num_blocks)])
751
+
752
+ def forward(self, x):
753
+ x = self.rescaler(x)
754
+ x = self.decoder(x)
755
+ return x
756
+
757
+
758
+ class Resize(nn.Module):
759
+ def __init__(self, in_channels=None, learned=False, mode="bilinear"):
760
+ super().__init__()
761
+ self.with_conv = learned
762
+ self.mode = mode
763
+ if self.with_conv:
764
+ print(f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode")
765
+ raise NotImplementedError()
766
+ assert in_channels is not None
767
+ # no asymmetric padding in torch conv, must do it ourselves
768
+ self.conv = torch.nn.Conv2d(in_channels,
769
+ in_channels,
770
+ kernel_size=4,
771
+ stride=2,
772
+ padding=1)
773
+
774
+ def forward(self, x, scale_factor=1.0):
775
+ if scale_factor==1.0:
776
+ return x
777
+ else:
778
+ x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor)
779
+ return x
780
+
781
+ class FirstStagePostProcessor(nn.Module):
782
+
783
+ def __init__(self, ch_mult:list, in_channels,
784
+ pretrained_model:nn.Module=None,
785
+ reshape=False,
786
+ n_channels=None,
787
+ dropout=0.,
788
+ pretrained_config=None):
789
+ super().__init__()
790
+ if pretrained_config is None:
791
+ assert pretrained_model is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
792
+ self.pretrained_model = pretrained_model
793
+ else:
794
+ assert pretrained_config is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
795
+ self.instantiate_pretrained(pretrained_config)
796
+
797
+ self.do_reshape = reshape
798
+
799
+ if n_channels is None:
800
+ n_channels = self.pretrained_model.encoder.ch
801
+
802
+ self.proj_norm = Normalize(in_channels,num_groups=in_channels//2)
803
+ self.proj = nn.Conv2d(in_channels,n_channels,kernel_size=3,
804
+ stride=1,padding=1)
805
+
806
+ blocks = []
807
+ downs = []
808
+ ch_in = n_channels
809
+ for m in ch_mult:
810
+ blocks.append(ResnetBlock(in_channels=ch_in,out_channels=m*n_channels,dropout=dropout))
811
+ ch_in = m * n_channels
812
+ downs.append(Downsample(ch_in, with_conv=False))
813
+
814
+ self.model = nn.ModuleList(blocks)
815
+ self.downsampler = nn.ModuleList(downs)
816
+
817
+
818
+ def instantiate_pretrained(self, config):
819
+ model = instantiate_from_config(config)
820
+ self.pretrained_model = model.eval()
821
+ # self.pretrained_model.train = False
822
+ for param in self.pretrained_model.parameters():
823
+ param.requires_grad = False
824
+
825
+
826
+ @torch.no_grad()
827
+ def encode_with_pretrained(self,x):
828
+ c = self.pretrained_model.encode(x)
829
+ if isinstance(c, DiagonalGaussianDistribution):
830
+ c = c.mode()
831
+ return c
832
+
833
+ def forward(self,x):
834
+ z_fs = self.encode_with_pretrained(x)
835
+ z = self.proj_norm(z_fs)
836
+ z = self.proj(z)
837
+ z = nonlinearity(z)
838
+
839
+ for submodel, downmodel in zip(self.model,self.downsampler):
840
+ z = submodel(z,temb=None)
841
+ z = downmodel(z)
842
+
843
+ if self.do_reshape:
844
+ z = rearrange(z,'b c h w -> b (h w) c')
845
+ return z
846
+
VADER-VideoCrafter/lvdm/modules/networks/openaimodel3d.py ADDED
@@ -0,0 +1,578 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copied from VideoCrafter: https://github.com/AILab-CVC/VideoCrafter
2
+ from functools import partial
3
+ from abc import abstractmethod
4
+ import torch
5
+ import torch.nn as nn
6
+ from einops import rearrange
7
+ import torch.nn.functional as F
8
+ from lvdm.models.utils_diffusion import timestep_embedding
9
+ from lvdm.common import checkpoint
10
+ from lvdm.basics import (
11
+ zero_module,
12
+ conv_nd,
13
+ linear,
14
+ avg_pool_nd,
15
+ normalization
16
+ )
17
+ from lvdm.modules.attention import SpatialTransformer, TemporalTransformer
18
+
19
+
20
+ class TimestepBlock(nn.Module):
21
+ """
22
+ Any module where forward() takes timestep embeddings as a second argument.
23
+ """
24
+ @abstractmethod
25
+ def forward(self, x, emb):
26
+ """
27
+ Apply the module to `x` given `emb` timestep embeddings.
28
+ """
29
+
30
+
31
+ class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
32
+ """
33
+ A sequential module that passes timestep embeddings to the children that
34
+ support it as an extra input.
35
+ """
36
+
37
+ def forward(self, x, emb, context=None, batch_size=None):
38
+ for layer in self:
39
+ if isinstance(layer, TimestepBlock):
40
+ x = layer(x, emb, batch_size)
41
+ elif isinstance(layer, SpatialTransformer):
42
+ x = layer(x, context)
43
+ elif isinstance(layer, TemporalTransformer):
44
+ x = rearrange(x, '(b f) c h w -> b c f h w', b=batch_size)
45
+ x = layer(x, context)
46
+ x = rearrange(x, 'b c f h w -> (b f) c h w')
47
+ else:
48
+ x = layer(x,)
49
+ return x
50
+
51
+
52
+ class Downsample(nn.Module):
53
+ """
54
+ A downsampling layer with an optional convolution.
55
+ :param channels: channels in the inputs and outputs.
56
+ :param use_conv: a bool determining if a convolution is applied.
57
+ :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
58
+ downsampling occurs in the inner-two dimensions.
59
+ """
60
+
61
+ def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
62
+ super().__init__()
63
+ self.channels = channels
64
+ self.out_channels = out_channels or channels
65
+ self.use_conv = use_conv
66
+ self.dims = dims
67
+ stride = 2 if dims != 3 else (1, 2, 2)
68
+ if use_conv:
69
+ self.op = conv_nd(
70
+ dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
71
+ )
72
+ else:
73
+ assert self.channels == self.out_channels
74
+ self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
75
+
76
+ def forward(self, x):
77
+ assert x.shape[1] == self.channels
78
+ return self.op(x)
79
+
80
+
81
+ class Upsample(nn.Module):
82
+ """
83
+ An upsampling layer with an optional convolution.
84
+ :param channels: channels in the inputs and outputs.
85
+ :param use_conv: a bool determining if a convolution is applied.
86
+ :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
87
+ upsampling occurs in the inner-two dimensions.
88
+ """
89
+
90
+ def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
91
+ super().__init__()
92
+ self.channels = channels
93
+ self.out_channels = out_channels or channels
94
+ self.use_conv = use_conv
95
+ self.dims = dims
96
+ if use_conv:
97
+ self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
98
+
99
+ def forward(self, x):
100
+ assert x.shape[1] == self.channels
101
+ if self.dims == 3:
102
+ x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode='nearest')
103
+ else:
104
+ x = F.interpolate(x, scale_factor=2, mode='nearest')
105
+ if self.use_conv:
106
+ x = self.conv(x)
107
+ return x
108
+
109
+
110
+ class ResBlock(TimestepBlock):
111
+ """
112
+ A residual block that can optionally change the number of channels.
113
+ :param channels: the number of input channels.
114
+ :param emb_channels: the number of timestep embedding channels.
115
+ :param dropout: the rate of dropout.
116
+ :param out_channels: if specified, the number of out channels.
117
+ :param use_conv: if True and out_channels is specified, use a spatial
118
+ convolution instead of a smaller 1x1 convolution to change the
119
+ channels in the skip connection.
120
+ :param dims: determines if the signal is 1D, 2D, or 3D.
121
+ :param up: if True, use this block for upsampling.
122
+ :param down: if True, use this block for downsampling.
123
+ """
124
+
125
+ def __init__(
126
+ self,
127
+ channels,
128
+ emb_channels,
129
+ dropout,
130
+ out_channels=None,
131
+ use_scale_shift_norm=False,
132
+ dims=2,
133
+ use_checkpoint=False,
134
+ use_conv=False,
135
+ up=False,
136
+ down=False,
137
+ use_temporal_conv=False,
138
+ tempspatial_aware=False
139
+ ):
140
+ super().__init__()
141
+ self.channels = channels
142
+ self.emb_channels = emb_channels
143
+ self.dropout = dropout
144
+ self.out_channels = out_channels or channels
145
+ self.use_conv = use_conv
146
+ self.use_checkpoint = use_checkpoint
147
+ self.use_scale_shift_norm = use_scale_shift_norm
148
+ self.use_temporal_conv = use_temporal_conv
149
+
150
+ self.in_layers = nn.Sequential(
151
+ normalization(channels),
152
+ nn.SiLU(),
153
+ conv_nd(dims, channels, self.out_channels, 3, padding=1),
154
+ )
155
+
156
+ self.updown = up or down
157
+
158
+ if up:
159
+ self.h_upd = Upsample(channels, False, dims)
160
+ self.x_upd = Upsample(channels, False, dims)
161
+ elif down:
162
+ self.h_upd = Downsample(channels, False, dims)
163
+ self.x_upd = Downsample(channels, False, dims)
164
+ else:
165
+ self.h_upd = self.x_upd = nn.Identity()
166
+
167
+ self.emb_layers = nn.Sequential(
168
+ nn.SiLU(),
169
+ nn.Linear(
170
+ emb_channels,
171
+ 2 * self.out_channels if use_scale_shift_norm else self.out_channels,
172
+ ),
173
+ )
174
+ self.out_layers = nn.Sequential(
175
+ normalization(self.out_channels),
176
+ nn.SiLU(),
177
+ nn.Dropout(p=dropout),
178
+ zero_module(nn.Conv2d(self.out_channels, self.out_channels, 3, padding=1)),
179
+ )
180
+
181
+ if self.out_channels == channels:
182
+ self.skip_connection = nn.Identity()
183
+ elif use_conv:
184
+ self.skip_connection = conv_nd(dims, channels, self.out_channels, 3, padding=1)
185
+ else:
186
+ self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
187
+
188
+ if self.use_temporal_conv:
189
+ self.temopral_conv = TemporalConvBlock(
190
+ self.out_channels,
191
+ self.out_channels,
192
+ dropout=0.1,
193
+ spatial_aware=tempspatial_aware
194
+ )
195
+
196
+ def forward(self, x, emb, batch_size=None):
197
+ """
198
+ Apply the block to a Tensor, conditioned on a timestep embedding.
199
+ :param x: an [N x C x ...] Tensor of features.
200
+ :param emb: an [N x emb_channels] Tensor of timestep embeddings.
201
+ :return: an [N x C x ...] Tensor of outputs.
202
+ """
203
+ input_tuple = (x, emb,)
204
+ if batch_size:
205
+ forward_batchsize = partial(self._forward, batch_size=batch_size)
206
+ return checkpoint(forward_batchsize, input_tuple, self.parameters(), self.use_checkpoint)
207
+ return checkpoint(self._forward, input_tuple, self.parameters(), self.use_checkpoint)
208
+
209
+ def _forward(self, x, emb, batch_size=None,):
210
+ if self.updown:
211
+ in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
212
+ h = in_rest(x)
213
+ h = self.h_upd(h)
214
+ x = self.x_upd(x)
215
+ h = in_conv(h)
216
+ else:
217
+ h = self.in_layers(x)
218
+ emb_out = self.emb_layers(emb).type(h.dtype)
219
+ while len(emb_out.shape) < len(h.shape):
220
+ emb_out = emb_out[..., None]
221
+ if self.use_scale_shift_norm:
222
+ out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
223
+ scale, shift = torch.chunk(emb_out, 2, dim=1)
224
+ h = out_norm(h) * (1 + scale) + shift
225
+ h = out_rest(h)
226
+ else:
227
+ h = h + emb_out
228
+ h = self.out_layers(h)
229
+ h = self.skip_connection(x) + h
230
+
231
+ if self.use_temporal_conv and batch_size:
232
+ h = rearrange(h, '(b t) c h w -> b c t h w', b=batch_size)
233
+ h = self.temopral_conv(h)
234
+ h = rearrange(h, 'b c t h w -> (b t) c h w')
235
+ return h
236
+
237
+
238
+ class TemporalConvBlock(nn.Module):
239
+ """
240
+ Adapted from modelscope: https://github.com/modelscope/modelscope/blob/master/modelscope/models/multi_modal/video_synthesis/unet_sd.py
241
+ """
242
+
243
+ def __init__(self, in_channels, out_channels=None, dropout=0.0, spatial_aware=False):
244
+ super(TemporalConvBlock, self).__init__()
245
+ if out_channels is None:
246
+ out_channels = in_channels
247
+ self.in_channels = in_channels
248
+ self.out_channels = out_channels
249
+ kernel_shape = (3, 1, 1) if not spatial_aware else (3, 3, 3)
250
+ padding_shape = (1, 0, 0) if not spatial_aware else (1, 1, 1)
251
+
252
+ # conv layers
253
+ self.conv1 = nn.Sequential(
254
+ nn.GroupNorm(32, in_channels), nn.SiLU(),
255
+ nn.Conv3d(in_channels, out_channels, kernel_shape, padding=padding_shape))
256
+ self.conv2 = nn.Sequential(
257
+ nn.GroupNorm(32, out_channels), nn.SiLU(), nn.Dropout(dropout),
258
+ nn.Conv3d(out_channels, in_channels, kernel_shape, padding=padding_shape))
259
+ self.conv3 = nn.Sequential(
260
+ nn.GroupNorm(32, out_channels), nn.SiLU(), nn.Dropout(dropout),
261
+ nn.Conv3d(out_channels, in_channels, (3, 1, 1), padding=(1, 0, 0)))
262
+ self.conv4 = nn.Sequential(
263
+ nn.GroupNorm(32, out_channels), nn.SiLU(), nn.Dropout(dropout),
264
+ nn.Conv3d(out_channels, in_channels, (3, 1, 1), padding=(1, 0, 0)))
265
+
266
+ # zero out the last layer params,so the conv block is identity
267
+ nn.init.zeros_(self.conv4[-1].weight)
268
+ nn.init.zeros_(self.conv4[-1].bias)
269
+
270
+ def forward(self, x):
271
+ identity = x
272
+ x = self.conv1(x)
273
+ x = self.conv2(x)
274
+ x = self.conv3(x)
275
+ x = self.conv4(x)
276
+
277
+ return x + identity
278
+
279
+
280
+ class UNetModel(nn.Module):
281
+ """
282
+ The full UNet model with attention and timestep embedding.
283
+ :param in_channels: in_channels in the input Tensor.
284
+ :param model_channels: base channel count for the model.
285
+ :param out_channels: channels in the output Tensor.
286
+ :param num_res_blocks: number of residual blocks per downsample.
287
+ :param attention_resolutions: a collection of downsample rates at which
288
+ attention will take place. May be a set, list, or tuple.
289
+ For example, if this contains 4, then at 4x downsampling, attention
290
+ will be used.
291
+ :param dropout: the dropout probability.
292
+ :param channel_mult: channel multiplier for each level of the UNet.
293
+ :param conv_resample: if True, use learned convolutions for upsampling and
294
+ downsampling.
295
+ :param dims: determines if the signal is 1D, 2D, or 3D.
296
+ :param num_classes: if specified (as an int), then this model will be
297
+ class-conditional with `num_classes` classes.
298
+ :param use_checkpoint: use gradient checkpointing to reduce memory usage.
299
+ :param num_heads: the number of attention heads in each attention layer.
300
+ :param num_heads_channels: if specified, ignore num_heads and instead use
301
+ a fixed channel width per attention head.
302
+ :param num_heads_upsample: works with num_heads to set a different number
303
+ of heads for upsampling. Deprecated.
304
+ :param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
305
+ :param resblock_updown: use residual blocks for up/downsampling.
306
+ """
307
+
308
+ def __init__(self,
309
+ in_channels,
310
+ model_channels,
311
+ out_channels,
312
+ num_res_blocks,
313
+ attention_resolutions,
314
+ dropout=0.0,
315
+ channel_mult=(1, 2, 4, 8),
316
+ conv_resample=True,
317
+ dims=2,
318
+ context_dim=None,
319
+ use_scale_shift_norm=False,
320
+ resblock_updown=False,
321
+ num_heads=-1,
322
+ num_head_channels=-1,
323
+ transformer_depth=1,
324
+ use_linear=False,
325
+ use_checkpoint=False,
326
+ temporal_conv=False,
327
+ tempspatial_aware=False,
328
+ temporal_attention=True,
329
+ temporal_selfatt_only=True,
330
+ use_relative_position=True,
331
+ use_causal_attention=False,
332
+ temporal_length=None,
333
+ use_fp16=False,
334
+ addition_attention=False,
335
+ use_image_attention=False,
336
+ temporal_transformer_depth=1,
337
+ fps_cond=False,
338
+ ):
339
+ super(UNetModel, self).__init__()
340
+ if num_heads == -1:
341
+ assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
342
+ if num_head_channels == -1:
343
+ assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
344
+
345
+ self.in_channels = in_channels
346
+ self.model_channels = model_channels
347
+ self.out_channels = out_channels
348
+ self.num_res_blocks = num_res_blocks
349
+ self.attention_resolutions = attention_resolutions
350
+ self.dropout = dropout
351
+ self.channel_mult = channel_mult
352
+ self.conv_resample = conv_resample
353
+ self.temporal_attention = temporal_attention
354
+ time_embed_dim = model_channels * 4
355
+ self.use_checkpoint = use_checkpoint
356
+ self.dtype = torch.float16 if use_fp16 else torch.float32
357
+ self.addition_attention=addition_attention
358
+ self.use_image_attention = use_image_attention
359
+ self.fps_cond=fps_cond
360
+
361
+
362
+
363
+ self.time_embed = nn.Sequential(
364
+ linear(model_channels, time_embed_dim),
365
+ nn.SiLU(),
366
+ linear(time_embed_dim, time_embed_dim),
367
+ )
368
+ if self.fps_cond:
369
+ self.fps_embedding = nn.Sequential(
370
+ linear(model_channels, time_embed_dim),
371
+ nn.SiLU(),
372
+ linear(time_embed_dim, time_embed_dim),
373
+ )
374
+
375
+ self.input_blocks = nn.ModuleList(
376
+ [
377
+ TimestepEmbedSequential(conv_nd(dims, in_channels, model_channels, 3, padding=1))
378
+ ]
379
+ )
380
+ if self.addition_attention:
381
+ self.init_attn=TimestepEmbedSequential(
382
+ TemporalTransformer(
383
+ model_channels,
384
+ n_heads=8,
385
+ d_head=num_head_channels,
386
+ depth=transformer_depth,
387
+ context_dim=context_dim,
388
+ use_checkpoint=use_checkpoint, only_self_att=temporal_selfatt_only,
389
+ causal_attention=use_causal_attention, relative_position=use_relative_position,
390
+ temporal_length=temporal_length))
391
+
392
+ input_block_chans = [model_channels]
393
+ ch = model_channels
394
+ ds = 1
395
+ for level, mult in enumerate(channel_mult):
396
+ for _ in range(num_res_blocks):
397
+ layers = [
398
+ ResBlock(ch, time_embed_dim, dropout,
399
+ out_channels=mult * model_channels, dims=dims, use_checkpoint=use_checkpoint,
400
+ use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware,
401
+ use_temporal_conv=temporal_conv
402
+ )
403
+ ]
404
+ ch = mult * model_channels
405
+ if ds in attention_resolutions:
406
+ if num_head_channels == -1:
407
+ dim_head = ch // num_heads
408
+ else:
409
+ num_heads = ch // num_head_channels
410
+ dim_head = num_head_channels
411
+ layers.append(
412
+ SpatialTransformer(ch, num_heads, dim_head,
413
+ depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
414
+ use_checkpoint=use_checkpoint, disable_self_attn=False,
415
+ img_cross_attention=self.use_image_attention
416
+ )
417
+ )
418
+ if self.temporal_attention:
419
+ layers.append(
420
+ TemporalTransformer(ch, num_heads, dim_head,
421
+ depth=temporal_transformer_depth, context_dim=context_dim, use_linear=use_linear,
422
+ use_checkpoint=use_checkpoint, only_self_att=temporal_selfatt_only,
423
+ causal_attention=use_causal_attention, relative_position=use_relative_position,
424
+ temporal_length=temporal_length
425
+ )
426
+ )
427
+ self.input_blocks.append(TimestepEmbedSequential(*layers))
428
+ input_block_chans.append(ch)
429
+ if level != len(channel_mult) - 1:
430
+ out_ch = ch
431
+ self.input_blocks.append(
432
+ TimestepEmbedSequential(
433
+ ResBlock(ch, time_embed_dim, dropout,
434
+ out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint,
435
+ use_scale_shift_norm=use_scale_shift_norm,
436
+ down=True
437
+ )
438
+ if resblock_updown
439
+ else Downsample(ch, conv_resample, dims=dims, out_channels=out_ch)
440
+ )
441
+ )
442
+ ch = out_ch
443
+ input_block_chans.append(ch)
444
+ ds *= 2
445
+
446
+ if num_head_channels == -1:
447
+ dim_head = ch // num_heads
448
+ else:
449
+ num_heads = ch // num_head_channels
450
+ dim_head = num_head_channels
451
+ layers = [
452
+ ResBlock(ch, time_embed_dim, dropout,
453
+ dims=dims, use_checkpoint=use_checkpoint,
454
+ use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware,
455
+ use_temporal_conv=temporal_conv
456
+ ),
457
+ SpatialTransformer(ch, num_heads, dim_head,
458
+ depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
459
+ use_checkpoint=use_checkpoint, disable_self_attn=False,
460
+ img_cross_attention=self.use_image_attention
461
+ )
462
+ ]
463
+ if self.temporal_attention:
464
+ layers.append(
465
+ TemporalTransformer(ch, num_heads, dim_head,
466
+ depth=temporal_transformer_depth, context_dim=context_dim, use_linear=use_linear,
467
+ use_checkpoint=use_checkpoint, only_self_att=temporal_selfatt_only,
468
+ causal_attention=use_causal_attention, relative_position=use_relative_position,
469
+ temporal_length=temporal_length
470
+ )
471
+ )
472
+ layers.append(
473
+ ResBlock(ch, time_embed_dim, dropout,
474
+ dims=dims, use_checkpoint=use_checkpoint,
475
+ use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware,
476
+ use_temporal_conv=temporal_conv
477
+ )
478
+ )
479
+ self.middle_block = TimestepEmbedSequential(*layers)
480
+
481
+ self.output_blocks = nn.ModuleList([])
482
+ for level, mult in list(enumerate(channel_mult))[::-1]:
483
+ for i in range(num_res_blocks + 1):
484
+ ich = input_block_chans.pop()
485
+ layers = [
486
+ ResBlock(ch + ich, time_embed_dim, dropout,
487
+ out_channels=mult * model_channels, dims=dims, use_checkpoint=use_checkpoint,
488
+ use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware,
489
+ use_temporal_conv=temporal_conv
490
+ )
491
+ ]
492
+ ch = model_channels * mult
493
+ if ds in attention_resolutions:
494
+ if num_head_channels == -1:
495
+ dim_head = ch // num_heads
496
+ else:
497
+ num_heads = ch // num_head_channels
498
+ dim_head = num_head_channels
499
+ layers.append(
500
+ SpatialTransformer(ch, num_heads, dim_head,
501
+ depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
502
+ use_checkpoint=use_checkpoint, disable_self_attn=False,
503
+ img_cross_attention=self.use_image_attention
504
+ )
505
+ )
506
+ if self.temporal_attention:
507
+ layers.append(
508
+ TemporalTransformer(ch, num_heads, dim_head,
509
+ depth=temporal_transformer_depth, context_dim=context_dim, use_linear=use_linear,
510
+ use_checkpoint=use_checkpoint, only_self_att=temporal_selfatt_only,
511
+ causal_attention=use_causal_attention, relative_position=use_relative_position,
512
+ temporal_length=temporal_length
513
+ )
514
+ )
515
+ if level and i == num_res_blocks:
516
+ out_ch = ch
517
+ layers.append(
518
+ ResBlock(ch, time_embed_dim, dropout,
519
+ out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint,
520
+ use_scale_shift_norm=use_scale_shift_norm,
521
+ up=True
522
+ )
523
+ if resblock_updown
524
+ else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
525
+ )
526
+ ds //= 2
527
+ self.output_blocks.append(TimestepEmbedSequential(*layers))
528
+
529
+ self.out = nn.Sequential(
530
+ normalization(ch),
531
+ nn.SiLU(),
532
+ zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
533
+ )
534
+
535
+ def forward(self, x, timesteps, context=None, features_adapter=None, fps=16, **kwargs):
536
+ t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
537
+ emb = self.time_embed(t_emb)
538
+
539
+ if self.fps_cond:
540
+ if type(fps) == int:
541
+ fps = torch.full_like(timesteps, fps)
542
+ fps_emb = timestep_embedding(fps,self.model_channels, repeat_only=False)
543
+ emb += self.fps_embedding(fps_emb)
544
+
545
+ b,_,t,_,_ = x.shape
546
+ ## repeat t times for context [(b t) 77 768] & time embedding
547
+ context = context.repeat_interleave(repeats=t, dim=0)
548
+ emb = emb.repeat_interleave(repeats=t, dim=0)
549
+
550
+ ## always in shape (b t) c h w, except for temporal layer
551
+ x = rearrange(x, 'b c t h w -> (b t) c h w')
552
+
553
+ h = x.type(self.dtype)
554
+ adapter_idx = 0
555
+ hs = []
556
+ for id, module in enumerate(self.input_blocks):
557
+ h = module(h, emb, context=context, batch_size=b)
558
+ if id ==0 and self.addition_attention:
559
+ h = self.init_attn(h, emb, context=context, batch_size=b)
560
+ ## plug-in adapter features
561
+ if ((id+1)%3 == 0) and features_adapter is not None:
562
+ h = h + features_adapter[adapter_idx]
563
+ adapter_idx += 1
564
+ hs.append(h)
565
+ if features_adapter is not None:
566
+ assert len(features_adapter)==adapter_idx, 'Wrong features_adapter'
567
+
568
+ h = self.middle_block(h, emb, context=context, batch_size=b)
569
+ for module in self.output_blocks:
570
+ h = torch.cat([h, hs.pop()], dim=1)
571
+ h = module(h, emb, context=context, batch_size=b)
572
+ h = h.type(x.dtype)
573
+ y = self.out(h)
574
+
575
+ # reshape back to (b c t h w)
576
+ y = rearrange(y, '(b t) c h w -> b c t h w', b=b)
577
+ return y
578
+
VADER-VideoCrafter/lvdm/modules/x_transformer.py ADDED
@@ -0,0 +1,640 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """shout-out to https://github.com/lucidrains/x-transformers/tree/main/x_transformers"""
2
+ from functools import partial
3
+ from inspect import isfunction
4
+ from collections import namedtuple
5
+ from einops import rearrange, repeat
6
+ import torch
7
+ from torch import nn, einsum
8
+ import torch.nn.functional as F
9
+
10
+ # constants
11
+ DEFAULT_DIM_HEAD = 64
12
+
13
+ Intermediates = namedtuple('Intermediates', [
14
+ 'pre_softmax_attn',
15
+ 'post_softmax_attn'
16
+ ])
17
+
18
+ LayerIntermediates = namedtuple('Intermediates', [
19
+ 'hiddens',
20
+ 'attn_intermediates'
21
+ ])
22
+
23
+
24
+ class AbsolutePositionalEmbedding(nn.Module):
25
+ def __init__(self, dim, max_seq_len):
26
+ super().__init__()
27
+ self.emb = nn.Embedding(max_seq_len, dim)
28
+ self.init_()
29
+
30
+ def init_(self):
31
+ nn.init.normal_(self.emb.weight, std=0.02)
32
+
33
+ def forward(self, x):
34
+ n = torch.arange(x.shape[1], device=x.device)
35
+ return self.emb(n)[None, :, :]
36
+
37
+
38
+ class FixedPositionalEmbedding(nn.Module):
39
+ def __init__(self, dim):
40
+ super().__init__()
41
+ inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim))
42
+ self.register_buffer('inv_freq', inv_freq)
43
+
44
+ def forward(self, x, seq_dim=1, offset=0):
45
+ t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq) + offset
46
+ sinusoid_inp = torch.einsum('i , j -> i j', t, self.inv_freq)
47
+ emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1)
48
+ return emb[None, :, :]
49
+
50
+
51
+ # helpers
52
+
53
+ def exists(val):
54
+ return val is not None
55
+
56
+
57
+ def default(val, d):
58
+ if exists(val):
59
+ return val
60
+ return d() if isfunction(d) else d
61
+
62
+
63
+ def always(val):
64
+ def inner(*args, **kwargs):
65
+ return val
66
+ return inner
67
+
68
+
69
+ def not_equals(val):
70
+ def inner(x):
71
+ return x != val
72
+ return inner
73
+
74
+
75
+ def equals(val):
76
+ def inner(x):
77
+ return x == val
78
+ return inner
79
+
80
+
81
+ def max_neg_value(tensor):
82
+ return -torch.finfo(tensor.dtype).max
83
+
84
+
85
+ # keyword argument helpers
86
+
87
+ def pick_and_pop(keys, d):
88
+ values = list(map(lambda key: d.pop(key), keys))
89
+ return dict(zip(keys, values))
90
+
91
+
92
+ def group_dict_by_key(cond, d):
93
+ return_val = [dict(), dict()]
94
+ for key in d.keys():
95
+ match = bool(cond(key))
96
+ ind = int(not match)
97
+ return_val[ind][key] = d[key]
98
+ return (*return_val,)
99
+
100
+
101
+ def string_begins_with(prefix, str):
102
+ return str.startswith(prefix)
103
+
104
+
105
+ def group_by_key_prefix(prefix, d):
106
+ return group_dict_by_key(partial(string_begins_with, prefix), d)
107
+
108
+
109
+ def groupby_prefix_and_trim(prefix, d):
110
+ kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d)
111
+ kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items())))
112
+ return kwargs_without_prefix, kwargs
113
+
114
+
115
+ # classes
116
+ class Scale(nn.Module):
117
+ def __init__(self, value, fn):
118
+ super().__init__()
119
+ self.value = value
120
+ self.fn = fn
121
+
122
+ def forward(self, x, **kwargs):
123
+ x, *rest = self.fn(x, **kwargs)
124
+ return (x * self.value, *rest)
125
+
126
+
127
+ class Rezero(nn.Module):
128
+ def __init__(self, fn):
129
+ super().__init__()
130
+ self.fn = fn
131
+ self.g = nn.Parameter(torch.zeros(1))
132
+
133
+ def forward(self, x, **kwargs):
134
+ x, *rest = self.fn(x, **kwargs)
135
+ return (x * self.g, *rest)
136
+
137
+
138
+ class ScaleNorm(nn.Module):
139
+ def __init__(self, dim, eps=1e-5):
140
+ super().__init__()
141
+ self.scale = dim ** -0.5
142
+ self.eps = eps
143
+ self.g = nn.Parameter(torch.ones(1))
144
+
145
+ def forward(self, x):
146
+ norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
147
+ return x / norm.clamp(min=self.eps) * self.g
148
+
149
+
150
+ class RMSNorm(nn.Module):
151
+ def __init__(self, dim, eps=1e-8):
152
+ super().__init__()
153
+ self.scale = dim ** -0.5
154
+ self.eps = eps
155
+ self.g = nn.Parameter(torch.ones(dim))
156
+
157
+ def forward(self, x):
158
+ norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
159
+ return x / norm.clamp(min=self.eps) * self.g
160
+
161
+
162
+ class Residual(nn.Module):
163
+ def forward(self, x, residual):
164
+ return x + residual
165
+
166
+
167
+ class GRUGating(nn.Module):
168
+ def __init__(self, dim):
169
+ super().__init__()
170
+ self.gru = nn.GRUCell(dim, dim)
171
+
172
+ def forward(self, x, residual):
173
+ gated_output = self.gru(
174
+ rearrange(x, 'b n d -> (b n) d'),
175
+ rearrange(residual, 'b n d -> (b n) d')
176
+ )
177
+
178
+ return gated_output.reshape_as(x)
179
+
180
+
181
+ # feedforward
182
+
183
+ class GEGLU(nn.Module):
184
+ def __init__(self, dim_in, dim_out):
185
+ super().__init__()
186
+ self.proj = nn.Linear(dim_in, dim_out * 2)
187
+
188
+ def forward(self, x):
189
+ x, gate = self.proj(x).chunk(2, dim=-1)
190
+ return x * F.gelu(gate)
191
+
192
+
193
+ class FeedForward(nn.Module):
194
+ def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
195
+ super().__init__()
196
+ inner_dim = int(dim * mult)
197
+ dim_out = default(dim_out, dim)
198
+ project_in = nn.Sequential(
199
+ nn.Linear(dim, inner_dim),
200
+ nn.GELU()
201
+ ) if not glu else GEGLU(dim, inner_dim)
202
+
203
+ self.net = nn.Sequential(
204
+ project_in,
205
+ nn.Dropout(dropout),
206
+ nn.Linear(inner_dim, dim_out)
207
+ )
208
+
209
+ def forward(self, x):
210
+ return self.net(x)
211
+
212
+
213
+ # attention.
214
+ class Attention(nn.Module):
215
+ def __init__(
216
+ self,
217
+ dim,
218
+ dim_head=DEFAULT_DIM_HEAD,
219
+ heads=8,
220
+ causal=False,
221
+ mask=None,
222
+ talking_heads=False,
223
+ sparse_topk=None,
224
+ use_entmax15=False,
225
+ num_mem_kv=0,
226
+ dropout=0.,
227
+ on_attn=False
228
+ ):
229
+ super().__init__()
230
+ if use_entmax15:
231
+ raise NotImplementedError("Check out entmax activation instead of softmax activation!")
232
+ self.scale = dim_head ** -0.5
233
+ self.heads = heads
234
+ self.causal = causal
235
+ self.mask = mask
236
+
237
+ inner_dim = dim_head * heads
238
+
239
+ self.to_q = nn.Linear(dim, inner_dim, bias=False)
240
+ self.to_k = nn.Linear(dim, inner_dim, bias=False)
241
+ self.to_v = nn.Linear(dim, inner_dim, bias=False)
242
+ self.dropout = nn.Dropout(dropout)
243
+
244
+ # talking heads
245
+ self.talking_heads = talking_heads
246
+ if talking_heads:
247
+ self.pre_softmax_proj = nn.Parameter(torch.randn(heads, heads))
248
+ self.post_softmax_proj = nn.Parameter(torch.randn(heads, heads))
249
+
250
+ # explicit topk sparse attention
251
+ self.sparse_topk = sparse_topk
252
+
253
+ # entmax
254
+ #self.attn_fn = entmax15 if use_entmax15 else F.softmax
255
+ self.attn_fn = F.softmax
256
+
257
+ # add memory key / values
258
+ self.num_mem_kv = num_mem_kv
259
+ if num_mem_kv > 0:
260
+ self.mem_k = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
261
+ self.mem_v = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
262
+
263
+ # attention on attention
264
+ self.attn_on_attn = on_attn
265
+ self.to_out = nn.Sequential(nn.Linear(inner_dim, dim * 2), nn.GLU()) if on_attn else nn.Linear(inner_dim, dim)
266
+
267
+ def forward(
268
+ self,
269
+ x,
270
+ context=None,
271
+ mask=None,
272
+ context_mask=None,
273
+ rel_pos=None,
274
+ sinusoidal_emb=None,
275
+ prev_attn=None,
276
+ mem=None
277
+ ):
278
+ b, n, _, h, talking_heads, device = *x.shape, self.heads, self.talking_heads, x.device
279
+ kv_input = default(context, x)
280
+
281
+ q_input = x
282
+ k_input = kv_input
283
+ v_input = kv_input
284
+
285
+ if exists(mem):
286
+ k_input = torch.cat((mem, k_input), dim=-2)
287
+ v_input = torch.cat((mem, v_input), dim=-2)
288
+
289
+ if exists(sinusoidal_emb):
290
+ # in shortformer, the query would start at a position offset depending on the past cached memory
291
+ offset = k_input.shape[-2] - q_input.shape[-2]
292
+ q_input = q_input + sinusoidal_emb(q_input, offset=offset)
293
+ k_input = k_input + sinusoidal_emb(k_input)
294
+
295
+ q = self.to_q(q_input)
296
+ k = self.to_k(k_input)
297
+ v = self.to_v(v_input)
298
+
299
+ q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v))
300
+
301
+ input_mask = None
302
+ if any(map(exists, (mask, context_mask))):
303
+ q_mask = default(mask, lambda: torch.ones((b, n), device=device).bool())
304
+ k_mask = q_mask if not exists(context) else context_mask
305
+ k_mask = default(k_mask, lambda: torch.ones((b, k.shape[-2]), device=device).bool())
306
+ q_mask = rearrange(q_mask, 'b i -> b () i ()')
307
+ k_mask = rearrange(k_mask, 'b j -> b () () j')
308
+ input_mask = q_mask * k_mask
309
+
310
+ if self.num_mem_kv > 0:
311
+ mem_k, mem_v = map(lambda t: repeat(t, 'h n d -> b h n d', b=b), (self.mem_k, self.mem_v))
312
+ k = torch.cat((mem_k, k), dim=-2)
313
+ v = torch.cat((mem_v, v), dim=-2)
314
+ if exists(input_mask):
315
+ input_mask = F.pad(input_mask, (self.num_mem_kv, 0), value=True)
316
+
317
+ dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
318
+ mask_value = max_neg_value(dots)
319
+
320
+ if exists(prev_attn):
321
+ dots = dots + prev_attn
322
+
323
+ pre_softmax_attn = dots
324
+
325
+ if talking_heads:
326
+ dots = einsum('b h i j, h k -> b k i j', dots, self.pre_softmax_proj).contiguous()
327
+
328
+ if exists(rel_pos):
329
+ dots = rel_pos(dots)
330
+
331
+ if exists(input_mask):
332
+ dots.masked_fill_(~input_mask, mask_value)
333
+ del input_mask
334
+
335
+ if self.causal:
336
+ i, j = dots.shape[-2:]
337
+ r = torch.arange(i, device=device)
338
+ mask = rearrange(r, 'i -> () () i ()') < rearrange(r, 'j -> () () () j')
339
+ mask = F.pad(mask, (j - i, 0), value=False)
340
+ dots.masked_fill_(mask, mask_value)
341
+ del mask
342
+
343
+ if exists(self.sparse_topk) and self.sparse_topk < dots.shape[-1]:
344
+ top, _ = dots.topk(self.sparse_topk, dim=-1)
345
+ vk = top[..., -1].unsqueeze(-1).expand_as(dots)
346
+ mask = dots < vk
347
+ dots.masked_fill_(mask, mask_value)
348
+ del mask
349
+
350
+ attn = self.attn_fn(dots, dim=-1)
351
+ post_softmax_attn = attn
352
+
353
+ attn = self.dropout(attn)
354
+
355
+ if talking_heads:
356
+ attn = einsum('b h i j, h k -> b k i j', attn, self.post_softmax_proj).contiguous()
357
+
358
+ out = einsum('b h i j, b h j d -> b h i d', attn, v)
359
+ out = rearrange(out, 'b h n d -> b n (h d)')
360
+
361
+ intermediates = Intermediates(
362
+ pre_softmax_attn=pre_softmax_attn,
363
+ post_softmax_attn=post_softmax_attn
364
+ )
365
+
366
+ return self.to_out(out), intermediates
367
+
368
+
369
+ class AttentionLayers(nn.Module):
370
+ def __init__(
371
+ self,
372
+ dim,
373
+ depth,
374
+ heads=8,
375
+ causal=False,
376
+ cross_attend=False,
377
+ only_cross=False,
378
+ use_scalenorm=False,
379
+ use_rmsnorm=False,
380
+ use_rezero=False,
381
+ rel_pos_num_buckets=32,
382
+ rel_pos_max_distance=128,
383
+ position_infused_attn=False,
384
+ custom_layers=None,
385
+ sandwich_coef=None,
386
+ par_ratio=None,
387
+ residual_attn=False,
388
+ cross_residual_attn=False,
389
+ macaron=False,
390
+ pre_norm=True,
391
+ gate_residual=False,
392
+ **kwargs
393
+ ):
394
+ super().__init__()
395
+ ff_kwargs, kwargs = groupby_prefix_and_trim('ff_', kwargs)
396
+ attn_kwargs, _ = groupby_prefix_and_trim('attn_', kwargs)
397
+
398
+ dim_head = attn_kwargs.get('dim_head', DEFAULT_DIM_HEAD)
399
+
400
+ self.dim = dim
401
+ self.depth = depth
402
+ self.layers = nn.ModuleList([])
403
+
404
+ self.has_pos_emb = position_infused_attn
405
+ self.pia_pos_emb = FixedPositionalEmbedding(dim) if position_infused_attn else None
406
+ self.rotary_pos_emb = always(None)
407
+
408
+ assert rel_pos_num_buckets <= rel_pos_max_distance, 'number of relative position buckets must be less than the relative position max distance'
409
+ self.rel_pos = None
410
+
411
+ self.pre_norm = pre_norm
412
+
413
+ self.residual_attn = residual_attn
414
+ self.cross_residual_attn = cross_residual_attn
415
+
416
+ norm_class = ScaleNorm if use_scalenorm else nn.LayerNorm
417
+ norm_class = RMSNorm if use_rmsnorm else norm_class
418
+ norm_fn = partial(norm_class, dim)
419
+
420
+ norm_fn = nn.Identity if use_rezero else norm_fn
421
+ branch_fn = Rezero if use_rezero else None
422
+
423
+ if cross_attend and not only_cross:
424
+ default_block = ('a', 'c', 'f')
425
+ elif cross_attend and only_cross:
426
+ default_block = ('c', 'f')
427
+ else:
428
+ default_block = ('a', 'f')
429
+
430
+ if macaron:
431
+ default_block = ('f',) + default_block
432
+
433
+ if exists(custom_layers):
434
+ layer_types = custom_layers
435
+ elif exists(par_ratio):
436
+ par_depth = depth * len(default_block)
437
+ assert 1 < par_ratio <= par_depth, 'par ratio out of range'
438
+ default_block = tuple(filter(not_equals('f'), default_block))
439
+ par_attn = par_depth // par_ratio
440
+ depth_cut = par_depth * 2 // 3 # 2 / 3 attention layer cutoff suggested by PAR paper
441
+ par_width = (depth_cut + depth_cut // par_attn) // par_attn
442
+ assert len(default_block) <= par_width, 'default block is too large for par_ratio'
443
+ par_block = default_block + ('f',) * (par_width - len(default_block))
444
+ par_head = par_block * par_attn
445
+ layer_types = par_head + ('f',) * (par_depth - len(par_head))
446
+ elif exists(sandwich_coef):
447
+ assert sandwich_coef > 0 and sandwich_coef <= depth, 'sandwich coefficient should be less than the depth'
448
+ layer_types = ('a',) * sandwich_coef + default_block * (depth - sandwich_coef) + ('f',) * sandwich_coef
449
+ else:
450
+ layer_types = default_block * depth
451
+
452
+ self.layer_types = layer_types
453
+ self.num_attn_layers = len(list(filter(equals('a'), layer_types)))
454
+
455
+ for layer_type in self.layer_types:
456
+ if layer_type == 'a':
457
+ layer = Attention(dim, heads=heads, causal=causal, **attn_kwargs)
458
+ elif layer_type == 'c':
459
+ layer = Attention(dim, heads=heads, **attn_kwargs)
460
+ elif layer_type == 'f':
461
+ layer = FeedForward(dim, **ff_kwargs)
462
+ layer = layer if not macaron else Scale(0.5, layer)
463
+ else:
464
+ raise Exception(f'invalid layer type {layer_type}')
465
+
466
+ if isinstance(layer, Attention) and exists(branch_fn):
467
+ layer = branch_fn(layer)
468
+
469
+ if gate_residual:
470
+ residual_fn = GRUGating(dim)
471
+ else:
472
+ residual_fn = Residual()
473
+
474
+ self.layers.append(nn.ModuleList([
475
+ norm_fn(),
476
+ layer,
477
+ residual_fn
478
+ ]))
479
+
480
+ def forward(
481
+ self,
482
+ x,
483
+ context=None,
484
+ mask=None,
485
+ context_mask=None,
486
+ mems=None,
487
+ return_hiddens=False
488
+ ):
489
+ hiddens = []
490
+ intermediates = []
491
+ prev_attn = None
492
+ prev_cross_attn = None
493
+
494
+ mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers
495
+
496
+ for ind, (layer_type, (norm, block, residual_fn)) in enumerate(zip(self.layer_types, self.layers)):
497
+ is_last = ind == (len(self.layers) - 1)
498
+
499
+ if layer_type == 'a':
500
+ hiddens.append(x)
501
+ layer_mem = mems.pop(0)
502
+
503
+ residual = x
504
+
505
+ if self.pre_norm:
506
+ x = norm(x)
507
+
508
+ if layer_type == 'a':
509
+ out, inter = block(x, mask=mask, sinusoidal_emb=self.pia_pos_emb, rel_pos=self.rel_pos,
510
+ prev_attn=prev_attn, mem=layer_mem)
511
+ elif layer_type == 'c':
512
+ out, inter = block(x, context=context, mask=mask, context_mask=context_mask, prev_attn=prev_cross_attn)
513
+ elif layer_type == 'f':
514
+ out = block(x)
515
+
516
+ x = residual_fn(out, residual)
517
+
518
+ if layer_type in ('a', 'c'):
519
+ intermediates.append(inter)
520
+
521
+ if layer_type == 'a' and self.residual_attn:
522
+ prev_attn = inter.pre_softmax_attn
523
+ elif layer_type == 'c' and self.cross_residual_attn:
524
+ prev_cross_attn = inter.pre_softmax_attn
525
+
526
+ if not self.pre_norm and not is_last:
527
+ x = norm(x)
528
+
529
+ if return_hiddens:
530
+ intermediates = LayerIntermediates(
531
+ hiddens=hiddens,
532
+ attn_intermediates=intermediates
533
+ )
534
+
535
+ return x, intermediates
536
+
537
+ return x
538
+
539
+
540
+ class Encoder(AttentionLayers):
541
+ def __init__(self, **kwargs):
542
+ assert 'causal' not in kwargs, 'cannot set causality on encoder'
543
+ super().__init__(causal=False, **kwargs)
544
+
545
+
546
+
547
+ class TransformerWrapper(nn.Module):
548
+ def __init__(
549
+ self,
550
+ *,
551
+ num_tokens,
552
+ max_seq_len,
553
+ attn_layers,
554
+ emb_dim=None,
555
+ max_mem_len=0.,
556
+ emb_dropout=0.,
557
+ num_memory_tokens=None,
558
+ tie_embedding=False,
559
+ use_pos_emb=True
560
+ ):
561
+ super().__init__()
562
+ assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder'
563
+
564
+ dim = attn_layers.dim
565
+ emb_dim = default(emb_dim, dim)
566
+
567
+ self.max_seq_len = max_seq_len
568
+ self.max_mem_len = max_mem_len
569
+ self.num_tokens = num_tokens
570
+
571
+ self.token_emb = nn.Embedding(num_tokens, emb_dim)
572
+ self.pos_emb = AbsolutePositionalEmbedding(emb_dim, max_seq_len) if (
573
+ use_pos_emb and not attn_layers.has_pos_emb) else always(0)
574
+ self.emb_dropout = nn.Dropout(emb_dropout)
575
+
576
+ self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity()
577
+ self.attn_layers = attn_layers
578
+ self.norm = nn.LayerNorm(dim)
579
+
580
+ self.init_()
581
+
582
+ self.to_logits = nn.Linear(dim, num_tokens) if not tie_embedding else lambda t: t @ self.token_emb.weight.t()
583
+
584
+ # memory tokens (like [cls]) from Memory Transformers paper
585
+ num_memory_tokens = default(num_memory_tokens, 0)
586
+ self.num_memory_tokens = num_memory_tokens
587
+ if num_memory_tokens > 0:
588
+ self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim))
589
+
590
+ # let funnel encoder know number of memory tokens, if specified
591
+ if hasattr(attn_layers, 'num_memory_tokens'):
592
+ attn_layers.num_memory_tokens = num_memory_tokens
593
+
594
+ def init_(self):
595
+ nn.init.normal_(self.token_emb.weight, std=0.02)
596
+
597
+ def forward(
598
+ self,
599
+ x,
600
+ return_embeddings=False,
601
+ mask=None,
602
+ return_mems=False,
603
+ return_attn=False,
604
+ mems=None,
605
+ **kwargs
606
+ ):
607
+ b, n, device, num_mem = *x.shape, x.device, self.num_memory_tokens
608
+ x = self.token_emb(x)
609
+ x += self.pos_emb(x)
610
+ x = self.emb_dropout(x)
611
+
612
+ x = self.project_emb(x)
613
+
614
+ if num_mem > 0:
615
+ mem = repeat(self.memory_tokens, 'n d -> b n d', b=b)
616
+ x = torch.cat((mem, x), dim=1)
617
+
618
+ # auto-handle masking after appending memory tokens
619
+ if exists(mask):
620
+ mask = F.pad(mask, (num_mem, 0), value=True)
621
+
622
+ x, intermediates = self.attn_layers(x, mask=mask, mems=mems, return_hiddens=True, **kwargs)
623
+ x = self.norm(x)
624
+
625
+ mem, x = x[:, :num_mem], x[:, num_mem:]
626
+
627
+ out = self.to_logits(x) if not return_embeddings else x
628
+
629
+ if return_mems:
630
+ hiddens = intermediates.hiddens
631
+ new_mems = list(map(lambda pair: torch.cat(pair, dim=-2), zip(mems, hiddens))) if exists(mems) else hiddens
632
+ new_mems = list(map(lambda t: t[..., -self.max_mem_len:, :].detach(), new_mems))
633
+ return out, new_mems
634
+
635
+ if return_attn:
636
+ attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates))
637
+ return out, attn_maps
638
+
639
+ return out
640
+
VADER-VideoCrafter/readme.md ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <div align="center">
2
+
3
+ <!-- TITLE -->
4
+ # 🌟**VADER-VideoCrafter**
5
+ </div>
6
+
7
+
8
+
9
+ We **highly recommend** proceeding with the VADER-VideoCrafter model first, which performs better than the other two.
10
+
11
+ ## ⚙️ Installation
12
+ Assuming you are in the `VADER/` directory, you are able to create a Conda environments for VADER-VideoCrafter using the following commands:
13
+ ```bash
14
+ cd VADER-VideoCrafter
15
+ conda create -n vader_videocrafter python=3.10
16
+ conda activate vader_videocrafter
17
+ conda install pytorch==2.3.0 torchvision==0.18.0 torchaudio==2.3.0 pytorch-cuda=12.1 -c pytorch -c nvidia
18
+ conda install xformers -c xformers
19
+ pip install -r requirements.txt
20
+ git clone https://github.com/tgxs002/HPSv2.git
21
+ cd HPSv2/
22
+ pip install -e .
23
+ cd ..
24
+ ```
25
+
26
+
27
+ - We are using the pretrained Text-to-Video [VideoCrafter2](https://huggingface.co/VideoCrafter/VideoCrafter2/blob/main/model.ckpt) model via Hugging Face. If you unfortunately find the model is not automatically downloaded when you running inference or training script, you can manually download it and put the `model.ckpt` in `VADER/VADER-VideoCrafter/checkpoints/base_512_v2/model.ckpt`.
28
+
29
+
30
+ ## 📺 Inference
31
+ Please run `accelerate config` as the first step to configure accelerator settings. If you are not familiar with the accelerator configuration, you can refer to VADER-VideoCrafter [documentation](../documentation/VADER-VideoCrafter.md).
32
+
33
+ Assuming you are in the `VADER/` directory, you are able to do inference using the following commands:
34
+ ```bash
35
+ cd VADER-VideoCrafter
36
+ sh scripts/run_text2video_inference.sh
37
+ ```
38
+ - We have tested on PyTorch 2.3.0 and CUDA 12.1. The inferece script works on a single GPU with 16GBs VRAM, when we set `val_batch_size=1` and use `fp16` mixed precision. It should also work with recent PyTorch and CUDA versions.
39
+ - `VADER/VADER-VideoCrafter/scripts/main/train_t2v_lora.py` is a script for inference of the VideoCrafter2 using VADER via LoRA.
40
+ - Most of the arguments are the same as the training process. The main difference is that `--inference_only` should be set to `True`.
41
+ - `--lora_ckpt_path` is required to set to the path of the pretrained LoRA model. Otherwise, the original VideoCrafter model will be used for inference.
42
+
43
+ ## 🔧 Training
44
+ Please run `accelerate config` as the first step to configure accelerator settings. If you are not familiar with the accelerator configuration, you can refer to VADER-VideoCrafter [documentation](../documentation/VADER-VideoCrafter.md).
45
+
46
+ Assuming you are in the `VADER/` directory, you are able to train the model using the following commands:
47
+
48
+ ```bash
49
+ cd VADER-VideoCrafter
50
+ sh scripts/run_text2video_train.sh
51
+ ```
52
+ - Our experiments are conducted on PyTorch 2.3.0 and CUDA 12.1 while using 4 A6000s (48GB RAM). It should also work with recent PyTorch and CUDA versions. The training script have been tested on a single GPU with 16GBs VRAM, when we set `train_batch_size=1 val_batch_size=1` and use `fp16` mixed precision.
53
+ - `VADER/VADER-VideoCrafter/scripts/main/train_t2v_lora.py` is also a script for fine-tuning the VideoCrafter2 using VADER via LoRA.
54
+ - You can read the VADER-VideoCrafter [documentation](../documentation/VADER-VideoCrafter.md) to understand the usage of arguments.
55
+
56
+ ## 💡 Tutorial
57
+ This section is to provide a tutorial on how to implement the VADER method on VideoCrafter by yourself. We will provide a step-by-step guide to help you understand the implementation details. Thus, you can easily adapt the VADER method to later versions of VideCrafter. This tutorial is based on the VideoCrafter2.
58
+
59
+ ### Step 1: Install the dependencies
60
+ First, you need to install the dependencies according to the [VideoCrafter](https://github.com/AILab-CVC/VideoCrafter) repository. You can also follow the instructions in the repository to install the dependencies.
61
+ ```bash
62
+ conda create -n vader_videocrafter python=3.8.5
63
+ conda activate vader_videocrafter
64
+ pip install -r requirements.txt
65
+ ```
66
+
67
+ You have to download pretrained Text-to-Video [VideoCrafter2](https://huggingface.co/VideoCrafter/VideoCrafter2/blob/main/model.ckpt) model via Hugging Face, and put the `model.ckpt` in the downloaded VideoCrafter directionary as `VideoCrafter/checkpoints/base_512_v2/model.ckpt`.
68
+
69
+ There are a list of extra dependencies that you need to install for VADER. You can install them by running the following command.
70
+ ```bash
71
+ # Install the HPS
72
+ git clone https://github.com/tgxs002/HPSv2.git
73
+ cd HPSv2/
74
+ pip install -e .
75
+ cd ..
76
+
77
+ # Install the dependencies
78
+ pip install albumentations \
79
+ peft \
80
+ bitsandbytes \
81
+ accelerate \
82
+ inflect \
83
+ wandb \
84
+ ipdb \
85
+ pytorch_lightning
86
+ ```
87
+
88
+ ### Step 2: Transfer VADER scripts
89
+ You can copy our `VADER/VADER-VideoCrafter/scripts/main/train_t2v_lora.py` to the `VideoCrafter/scripts/evaluation/` directory of VideoCrafter. It is better to copy our `run_text2video_train.sh` and `run_text2video_inference.sh` to the directionary `VideoCrafter/scripts/` as well. Then, you need to copy All the files in `VADER/Core/` and `VADER/assets/` to the parent directory of VideoCrafter, which means `Core/`, `assets` and `VideoCrafter/` should be in the same directory. Now, you may have a directory structure like:
90
+ ```bash
91
+ .
92
+ ├── Core
93
+ │ ├── ...
94
+ ├── VideoCrafter
95
+ │ ├── scripts
96
+ │ │ ├── evaluation
97
+ │ │ │ ├── train_t2v_lora.py
98
+ │ │ ├── run_text2video_train.sh
99
+ │ │ ├── run_text2video_inference.sh
100
+ │ ├── checkpoints
101
+ │ │ ├── base_512_v2
102
+ │ │ │ ├── model.ckpt
103
+ ├── assets
104
+ │ ├── ...
105
+ ```
106
+
107
+ ### Step 3: Modify the VideoCrafter code
108
+ You need to modify the VideoCrafter code to adapt the VADER method. You can follow the instructions below to modify the code.
109
+
110
+ - Modify the `batch_ddim_sampling()` function in `VideoCrafter/scripts/evaluation/funcs.py` as our implementation in `VADER/VADER-VideoCrafter/scripts/main/funcs.py`.
111
+ - Modify the `DDIMSampler.__init__()`, `DDIMSampler.sample()` and `DDIMSampler.ddim_sampling` functions in `VideoCrafter\lvdm\models\samplers\ddim.py` as our implementation in `VADER/VADER-VideoCrafter\lvdm\models\samplers\ddim.py`.
112
+ - Comment out the `@torch.no_grad()` before `DDIMSampler.sample()`, `DDIMSampler.ddim_sampling`, and `DDIMSampler.p_sample_ddim()` in `VideoCrafter\lvdm\models\samplers\ddim.py`. Also, comment out the `@torch.no_grad()` before `LatentDiffusion.decode_first_stage_2DAE()` in `VideoCrafter\lvdm\models\ddpm3d.py`.
113
+ - Because we have commented out the `@torch.no_grad()`, you can add `with torch.no_grad():` at some places in `VideoCrater/scripts/evaluation/inference.py` to avoid the gradient calculation.
114
+
115
+ ### Step 4: Ready to Train
116
+ Now you have all the files in the right place and modified the VideoCrafter source code. You can run the training script by running the following command.
117
+ ```bash
118
+ cd VideoCrafter
119
+
120
+ # training
121
+ sh scripts/run_text2video_train.sh
122
+
123
+ # or inference
124
+ sh scripts/run_text2video_inference.sh
125
+ ```
126
+
127
+
128
+ ## Acknowledgement
129
+
130
+ Our codebase is directly built on top of [VideoCrafter](https://github.com/AILab-CVC/VideoCrafter), [Open-Sora](https://github.com/hpcaitech/Open-Sora), and [Animate Anything](https://github.com/alibaba/animate-anything/). We would like to thank the authors for open-sourcing their code.
131
+
132
+ ## Citation
133
+
134
+ If you find this work useful in your research, please cite:
135
+
136
+ ```bibtex
137
+
138
+ ```
VADER-VideoCrafter/requirements.txt ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ decord==0.6.0
2
+ einops==0.3.0
3
+ imageio==2.9.0
4
+ numpy==1.24.2
5
+ omegaconf==2.1.1
6
+ opencv_python
7
+ pandas==2.0.0
8
+ Pillow==9.5.0
9
+ pytorch_lightning==2.3.1
10
+ PyYAML==6.0
11
+ setuptools==65.6.3
12
+ tqdm==4.65.0
13
+ transformers==4.25.1
14
+ moviepy==1.0.3
15
+ av==12.2.0
16
+ gradio
17
+ timm==1.0.7
18
+ scikit-learn==1.5.0
19
+ open_clip_torch==2.22.0
20
+ kornia==0.7.3
21
+ albumentations==1.3.1
22
+ peft==0.11.1
23
+ bitsandbytes==0.42.0
24
+ accelerate==0.31.0
25
+ inflect==7.3.0
26
+ wandb==0.17.3
27
+ ipdb==0.13.13
28
+ huggingface-hub==0.23.4
VADER-VideoCrafter/scripts/main/ddp_wrapper.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copied from VideoCrafter: https://github.com/AILab-CVC/VideoCrafter
2
+ import datetime
3
+ import argparse, importlib
4
+ from pytorch_lightning import seed_everything
5
+
6
+ import torch
7
+ import torch.distributed as dist
8
+
9
+ def setup_dist(local_rank):
10
+ if dist.is_initialized():
11
+ return
12
+ torch.cuda.set_device(local_rank)
13
+ torch.distributed.init_process_group('nccl', init_method='env://')
14
+
15
+
16
+ def get_dist_info():
17
+ if dist.is_available():
18
+ initialized = dist.is_initialized()
19
+ else:
20
+ initialized = False
21
+ if initialized:
22
+ rank = dist.get_rank()
23
+ world_size = dist.get_world_size()
24
+ else:
25
+ rank = 0
26
+ world_size = 1
27
+ return rank, world_size
28
+
29
+
30
+ if __name__ == '__main__':
31
+ now = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
32
+ parser = argparse.ArgumentParser()
33
+ parser.add_argument("--module", type=str, help="module name", default="inference")
34
+ parser.add_argument("--local_rank", type=int, nargs="?", help="for ddp", default=0)
35
+ args, unknown = parser.parse_known_args()
36
+ inference_api = importlib.import_module(args.module, package=None)
37
+
38
+ inference_parser = inference_api.get_parser()
39
+ inference_args, unknown = inference_parser.parse_known_args()
40
+
41
+ seed_everything(inference_args.seed)
42
+ setup_dist(args.local_rank)
43
+ torch.backends.cudnn.benchmark = True
44
+ rank, gpu_num = get_dist_info()
45
+
46
+ print("@CoLVDM Inference [rank%d]: %s"%(rank, now))
47
+ inference_api.run_inference(inference_args, gpu_num, rank)
VADER-VideoCrafter/scripts/main/funcs.py ADDED
@@ -0,0 +1,231 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from VideoCrafter: https://github.com/AILab-CVC/VideoCrafter
2
+ import os, sys, glob
3
+ import numpy as np
4
+ from collections import OrderedDict
5
+ from decord import VideoReader, cpu
6
+ import cv2
7
+ import random
8
+
9
+ import torch
10
+ import torchvision
11
+ sys.path.insert(1, os.path.join(sys.path[0], '..', '..'))
12
+ from lvdm.models.samplers.ddim import DDIMSampler
13
+ # import ipdb
14
+ # st = ipdb.set_trace
15
+
16
+ def batch_ddim_sampling(model, cond, noise_shape, n_samples=1, ddim_steps=50, ddim_eta=1.0,\
17
+ cfg_scale=1.0, temporal_cfg_scale=None, backprop_mode=None, decode_frame='-1', **kwargs):
18
+ ddim_sampler = DDIMSampler(model)
19
+ if backprop_mode is not None: # it is for training now, backprop_mode != None also means vader training mode
20
+ ddim_sampler.backprop_mode = backprop_mode
21
+ ddim_sampler.training_mode = True
22
+ uncond_type = model.uncond_type
23
+ batch_size = noise_shape[0]
24
+
25
+ ## construct unconditional guidance
26
+ if cfg_scale != 1.0:
27
+ if uncond_type == "empty_seq":
28
+ prompts = batch_size * [""]
29
+
30
+ uc_emb = model.get_learned_conditioning(prompts)
31
+ elif uncond_type == "zero_embed":
32
+ c_emb = cond["c_crossattn"][0] if isinstance(cond, dict) else cond
33
+ uc_emb = torch.zeros_like(c_emb)
34
+
35
+ ## process image embedding token
36
+ if hasattr(model, 'embedder'):
37
+ uc_img = torch.zeros(noise_shape[0],3,224,224).to(model.device)
38
+ ## img: b c h w >> b l c
39
+ uc_img = model.get_image_embeds(uc_img)
40
+ uc_emb = torch.cat([uc_emb, uc_img], dim=1)
41
+
42
+ if isinstance(cond, dict):
43
+ uc = {key:cond[key] for key in cond.keys()}
44
+ uc.update({'c_crossattn': [uc_emb]})
45
+ else:
46
+ uc = uc_emb
47
+ else:
48
+ uc = None
49
+
50
+ x_T = None
51
+ batch_variants = []
52
+
53
+ for _ in range(n_samples):
54
+ if ddim_sampler is not None:
55
+ kwargs.update({"clean_cond": True})
56
+ samples, _ = ddim_sampler.sample(S=ddim_steps, # samples: batch, c, t, h, w
57
+ conditioning=cond,
58
+ batch_size=noise_shape[0],
59
+ shape=noise_shape[1:],
60
+ verbose=False,
61
+ unconditional_guidance_scale=cfg_scale,
62
+ unconditional_conditioning=uc,
63
+ eta=ddim_eta,
64
+ temporal_length=noise_shape[2],
65
+ conditional_guidance_scale_temporal=temporal_cfg_scale,
66
+ x_T=x_T,
67
+ **kwargs
68
+ )
69
+
70
+ ## reconstruct from latent to pixel space
71
+ if backprop_mode is not None: # it is for training now. Use one frame randomly to save memory
72
+ try:
73
+ decode_frame=int(decode_frame)
74
+ #it's a int
75
+ except:
76
+ pass
77
+ if type(decode_frame) == int:
78
+ frame_index = random.randint(0,samples.shape[2]-1) if decode_frame == -1 else decode_frame # samples: batch, c, t, h, w
79
+ batch_images = model.decode_first_stage_2DAE(samples[:,:,frame_index:frame_index+1,:,:])
80
+ elif decode_frame in ['alt', 'all']:
81
+ idxs = range(0, samples.shape[2], 2) if decode_frame == 'alt' else range(samples.shape[2])
82
+ batch_images = model.decode_first_stage_2DAE(samples[:,:,idxs,:,:])
83
+
84
+
85
+ else: # inference mode
86
+ batch_images = model.decode_first_stage_2DAE(samples)
87
+ batch_variants.append(batch_images)
88
+
89
+ ## batch, <samples>, c, t, h, w
90
+ batch_variants = torch.stack(batch_variants, dim=1)
91
+ return batch_variants
92
+
93
+
94
+ def get_filelist(data_dir, ext='*'):
95
+ file_list = glob.glob(os.path.join(data_dir, '*.%s'%ext))
96
+ file_list.sort()
97
+ return file_list
98
+
99
+ def get_dirlist(path):
100
+ list = []
101
+ if (os.path.exists(path)):
102
+ files = os.listdir(path)
103
+ for file in files:
104
+ m = os.path.join(path,file)
105
+ if (os.path.isdir(m)):
106
+ list.append(m)
107
+ list.sort()
108
+ return list
109
+
110
+
111
+ def load_model_checkpoint(model, ckpt):
112
+ def load_checkpoint(model, ckpt, full_strict):
113
+ state_dict = torch.load(ckpt, map_location="cpu")
114
+ try:
115
+ ## deepspeed
116
+ new_pl_sd = OrderedDict()
117
+ for key in state_dict['module'].keys():
118
+ new_pl_sd[key[16:]]=state_dict['module'][key]
119
+ model.load_state_dict(new_pl_sd, strict=full_strict)
120
+ except:
121
+ if "state_dict" in list(state_dict.keys()):
122
+ state_dict = state_dict["state_dict"]
123
+ model.load_state_dict(state_dict, strict=full_strict)
124
+ return model
125
+ load_checkpoint(model, ckpt, full_strict=True)
126
+ print('>>> model checkpoint loaded.')
127
+ return model
128
+
129
+
130
+ def load_prompts(prompt_file):
131
+ f = open(prompt_file, 'r')
132
+ prompt_list = []
133
+ for idx, line in enumerate(f.readlines()):
134
+ l = line.strip()
135
+ if len(l) != 0:
136
+ prompt_list.append(l)
137
+ f.close()
138
+ return prompt_list
139
+
140
+
141
+ def load_video_batch(filepath_list, frame_stride, video_size=(256,256), video_frames=16):
142
+ '''
143
+ Notice about some special cases:
144
+ 1. video_frames=-1 means to take all the frames (with fs=1)
145
+ 2. when the total video frames is less than required, padding strategy will be used (repreated last frame)
146
+ '''
147
+ fps_list = []
148
+ batch_tensor = []
149
+ assert frame_stride > 0, "valid frame stride should be a positive interge!"
150
+ for filepath in filepath_list:
151
+ padding_num = 0
152
+ vidreader = VideoReader(filepath, ctx=cpu(0), width=video_size[1], height=video_size[0])
153
+ fps = vidreader.get_avg_fps()
154
+ total_frames = len(vidreader)
155
+ max_valid_frames = (total_frames-1) // frame_stride + 1
156
+ if video_frames < 0:
157
+ ## all frames are collected: fs=1 is a must
158
+ required_frames = total_frames
159
+ frame_stride = 1
160
+ else:
161
+ required_frames = video_frames
162
+ query_frames = min(required_frames, max_valid_frames)
163
+ frame_indices = [frame_stride*i for i in range(query_frames)]
164
+
165
+ ## [t,h,w,c] -> [c,t,h,w]
166
+ frames = vidreader.get_batch(frame_indices)
167
+ frame_tensor = torch.tensor(frames.asnumpy()).permute(3, 0, 1, 2).float()
168
+ frame_tensor = (frame_tensor / 255. - 0.5) * 2
169
+ if max_valid_frames < required_frames:
170
+ padding_num = required_frames - max_valid_frames
171
+ frame_tensor = torch.cat([frame_tensor, *([frame_tensor[:,-1:,:,:]]*padding_num)], dim=1)
172
+ print(f'{os.path.split(filepath)[1]} is not long enough: {padding_num} frames padded.')
173
+ batch_tensor.append(frame_tensor)
174
+ sample_fps = int(fps/frame_stride)
175
+ fps_list.append(sample_fps)
176
+
177
+ return torch.stack(batch_tensor, dim=0)
178
+
179
+ from PIL import Image
180
+ def load_image_batch(filepath_list, image_size=(256,256)):
181
+ batch_tensor = []
182
+ for filepath in filepath_list:
183
+ _, filename = os.path.split(filepath)
184
+ _, ext = os.path.splitext(filename)
185
+ if ext == '.mp4':
186
+ vidreader = VideoReader(filepath, ctx=cpu(0), width=image_size[1], height=image_size[0])
187
+ frame = vidreader.get_batch([0])
188
+ img_tensor = torch.tensor(frame.asnumpy()).squeeze(0).permute(2, 0, 1).float()
189
+ elif ext == '.png' or ext == '.jpg':
190
+ img = Image.open(filepath).convert("RGB")
191
+ rgb_img = np.array(img, np.float32)
192
+ #bgr_img = cv2.imread(filepath, cv2.IMREAD_COLOR)
193
+ #bgr_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2RGB)
194
+ rgb_img = cv2.resize(rgb_img, (image_size[1],image_size[0]), interpolation=cv2.INTER_LINEAR)
195
+ img_tensor = torch.from_numpy(rgb_img).permute(2, 0, 1).float()
196
+ else:
197
+ print(f'ERROR: <{ext}> image loading only support format: [mp4], [png], [jpg]')
198
+ raise NotImplementedError
199
+ img_tensor = (img_tensor / 255. - 0.5) * 2
200
+ batch_tensor.append(img_tensor)
201
+ return torch.stack(batch_tensor, dim=0)
202
+
203
+
204
+ def save_videos(batch_tensors, savedir, filenames, fps=10):
205
+ # b,samples,c,t,h,w
206
+ n_samples = batch_tensors.shape[1]
207
+ for idx, vid_tensor in enumerate(batch_tensors):
208
+ video = vid_tensor.detach().cpu()
209
+ video = torch.clamp(video.float(), -1., 1.)
210
+ video = video.permute(2, 0, 1, 3, 4) # t,n,c,h,w
211
+ frame_grids = [torchvision.utils.make_grid(framesheet, nrow=int(n_samples)) for framesheet in video] #[3, 1*h, n*w]
212
+ grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [t, 3, n*h, w]
213
+ grid = (grid + 1.0) / 2.0
214
+ grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1)
215
+ savepath = os.path.join(savedir, f"{filenames[idx]}.mp4")
216
+ torchvision.io.write_video(savepath, grid, fps=fps, video_codec='h264', options={'crf': '10'})
217
+
218
+ def get_videos(batch_tensors, fps=10):
219
+ # b,samples,c,t,h,w
220
+ n_samples = batch_tensors.shape[1]
221
+ vid_tensor = batch_tensors[0]
222
+ video = vid_tensor.detach().cpu()
223
+ video = torch.clamp(video.float(), -1., 1.)
224
+ video = video.permute(2, 0, 1, 3, 4) # t,n,c,h,w
225
+ frame_grids = [torchvision.utils.make_grid(framesheet, nrow=int(n_samples)) for framesheet in video] #[3, 1*h, n*w]
226
+ grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [t, 3, n*h, w]
227
+ grid = (grid + 1.0) / 2.0
228
+ grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1)
229
+
230
+ return grid
231
+
VADER-VideoCrafter/scripts/main/train_t2v_lora.py ADDED
@@ -0,0 +1,817 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse, os, sys, glob, yaml, math, random
2
+ sys.path.append('../') # setting path to get Core and assets
3
+
4
+ import datetime, time
5
+ import numpy as np
6
+ from omegaconf import OmegaConf
7
+ from collections import OrderedDict
8
+ from tqdm import trange, tqdm
9
+ from einops import repeat
10
+ from einops import rearrange, repeat
11
+ from functools import partial
12
+ import torch
13
+ from pytorch_lightning import seed_everything
14
+
15
+ from funcs import load_model_checkpoint, load_prompts, load_image_batch, get_filelist, save_videos, get_videos
16
+ from funcs import batch_ddim_sampling
17
+ from utils.utils import instantiate_from_config
18
+
19
+ import peft
20
+ import torchvision
21
+ from transformers.utils import ContextManagers
22
+ from transformers import AutoProcessor, AutoModel, AutoImageProcessor, AutoModelForObjectDetection, AutoModelForZeroShotObjectDetection
23
+ from Core.aesthetic_scorer import AestheticScorerDiff
24
+ from Core.actpred_scorer import ActPredScorer
25
+ from Core.weather_scorer import WeatherScorer
26
+ from Core.compression_scorer import JpegCompressionScorer, jpeg_compressibility
27
+ import Core.prompts as prompts_file
28
+ from hpsv2.src.open_clip import create_model_and_transforms, get_tokenizer
29
+ import hpsv2
30
+ import bitsandbytes as bnb
31
+ from accelerate import Accelerator
32
+ from accelerate.logging import get_logger
33
+ from accelerate.utils import gather_object
34
+ import torch.distributed as dist
35
+ import logging
36
+ import gc
37
+ from PIL import Image
38
+ import io
39
+ import albumentations as A
40
+ from huggingface_hub import snapshot_download
41
+ import cv2
42
+ # import ipdb
43
+ # st = ipdb.set_trace
44
+
45
+
46
+ logger = get_logger(__name__, log_level="INFO") # get logger for current module
47
+
48
+ def create_logging(logging, logger, accelerator):
49
+ logging.basicConfig(
50
+ format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
51
+ datefmt="%m/%d/%Y %H:%M:%S",
52
+ level=logging.INFO,
53
+ )
54
+ logger.info(accelerator.state, main_process_only=False)
55
+
56
+ def create_output_folders(output_dir, run_name):
57
+ out_dir = os.path.join(output_dir, run_name)
58
+ os.makedirs(out_dir, exist_ok=True)
59
+ os.makedirs(f"{out_dir}/samples", exist_ok=True)
60
+ return out_dir
61
+
62
+ def str2bool(v):
63
+ if isinstance(v, bool):
64
+ return v
65
+ if v.lower() in ('yes', 'true', 't', 'y', '1'):
66
+ return True
67
+ elif v.lower() in ('no', 'false', 'f', 'n', '0'):
68
+ return False
69
+ else:
70
+ raise argparse.ArgumentTypeError('Boolean value expected.')
71
+
72
+ def get_parser():
73
+ parser = argparse.ArgumentParser()
74
+ parser.add_argument("--seed", type=int, default=20230211, help="seed for seed_everything")
75
+ parser.add_argument("--mode", default="base", type=str, help="which kind of inference mode: {'base', 'i2v'}")
76
+ parser.add_argument("--ckpt_path", type=str, default='VADER-VideoCrafter/checkpoints/base_512_v2/model.ckpt', help="checkpoint path")
77
+ parser.add_argument("--config", type=str, default='VADER-VideoCrafter/configs/inference_t2v_512_v2.0.yaml', help="config (yaml) path")
78
+ parser.add_argument("--savefps", type=str, default=10, help="video fps to generate")
79
+ parser.add_argument("--n_samples", type=int, default=1, help="num of samples per prompt",)
80
+ parser.add_argument("--ddim_steps", type=int, default=50, help="steps of ddim if positive, otherwise use DDPM",)
81
+ parser.add_argument("--ddim_eta", type=float, default=1.0, help="eta for ddim sampling (0.0 yields deterministic sampling)",)
82
+ parser.add_argument("--height", type=int, default=512, help="image height, in pixel space")
83
+ parser.add_argument("--width", type=int, default=512, help="image width, in pixel space")
84
+ parser.add_argument("--frames", type=int, default=-1, help="frames num to inference")
85
+ parser.add_argument("--fps", type=int, default=24)
86
+ parser.add_argument("--unconditional_guidance_scale", type=float, default=1.0, help="prompt classifier-free guidance")
87
+ parser.add_argument("--unconditional_guidance_scale_temporal", type=float, default=None, help="temporal consistency guidance")
88
+ ## for conditional i2v only
89
+ parser.add_argument("--cond_input", type=str, default=None, help="data dir of conditional input")
90
+ ## for training
91
+ parser.add_argument("--lr", type=float, default=2e-4, help="learning rate")
92
+ parser.add_argument("--val_batch_size", type=int, default=1, help="batch size for validation")
93
+ parser.add_argument("--num_val_runs", type=int, default=1, help="total number of validation samples = num_val_runs * num_gpus * num_val_batch")
94
+ parser.add_argument("--train_batch_size", type=int, default=1, help="batch size for training")
95
+ parser.add_argument("--reward_fn", type=str, default="aesthetic", help="reward function: 'aesthetic', 'hps', 'aesthetic_hps', 'pick_score', 'rainy', 'snowy', 'objectDetection', 'actpred', 'compression'")
96
+ parser.add_argument("--compression_model_path", type=str, default='assets/compression_reward.pt', help="compression model path") # The compression model is used only when reward_fn is 'compression'
97
+ # The "book." is for grounding-dino model . Remember to add "." at the end of the object name for grounding-dino model.
98
+ # But for yolos model, do not add "." at the end of the object name. Instead, you should set the object name to "book" for example.
99
+ parser.add_argument("--target_object", type=str, default="book", help="target object for object detection reward function")
100
+ parser.add_argument("--detector_model", type=str, default="yolos-base", help="object detection model",
101
+ choices=["yolos-base", "yolos-tiny", "grounding-dino-base", "grounding-dino-tiny"])
102
+ parser.add_argument("--hps_version", type=str, default="v2.1", help="hps version: 'v2.0', 'v2.1'")
103
+ parser.add_argument("--prompt_fn", type=str, default="hps_custom", help="prompt function")
104
+ parser.add_argument("--nouns_file", type=str, default="simple_animals.txt", help="nouns file")
105
+ parser.add_argument("--activities_file", type=str, default="activities.txt", help="activities file")
106
+ parser.add_argument("--num_train_epochs", type=int, default=200, help="number of training epochs")
107
+ parser.add_argument("--max_train_steps", type=int, default=10000, help="max training steps")
108
+ parser.add_argument("--backprop_mode", type=str, default="last", help="backpropagation mode: 'last', 'rand', 'specific'") # backprop_mode != None also means training mode for batch_ddim_sampling
109
+ parser.add_argument("--gradient_accumulation_steps", type=int, default=1, help="gradient accumulation steps")
110
+ parser.add_argument("--mixed_precision", type=str, default='fp16', help="mixed precision training: 'no', 'fp8', 'fp16', 'bf16'")
111
+ parser.add_argument("--project_dir", type=str, default="VADER-VideoCrafter/project_dir", help="project directory")
112
+ parser.add_argument("--validation_steps", type=int, default=1, help="The frequency of validation, e.g., 1 means validate every 1*accelerator.num_processes steps")
113
+ parser.add_argument("--checkpointing_steps", type=int, default=1, help="The frequency of checkpointing")
114
+ parser.add_argument("--wandb_entity", type=str, default="", help="wandb entity")
115
+ parser.add_argument("--debug", type=str2bool, default=False, help="debug mode")
116
+ parser.add_argument("--max_grad_norm", type=float, default=1.0, help="max gradient norm")
117
+ parser.add_argument("--use_AdamW8bit", type=str2bool, default=False, help="use AdamW8bit optimizer")
118
+ parser.add_argument("--is_sample_preview", type=str2bool, default=True, help="sample preview during training")
119
+ parser.add_argument("--decode_frame", type=str, default="-1", help="decode frame: '-1', 'fml', 'all', 'alt'") # it could also be any number str like '3', '10'. alt: alternate frames, fml: first, middle, last frames, all: all frames. '-1': random frame
120
+ parser.add_argument("--inference_only", type=str2bool, default=True, help="only do inference")
121
+ parser.add_argument("--lora_ckpt_path", type=str, default=None, help="LoRA checkpoint path")
122
+ parser.add_argument("--lora_rank", type=int, default=16, help="LoRA rank")
123
+
124
+ return parser
125
+
126
+
127
+ def aesthetic_loss_fn(aesthetic_target=None,
128
+ grad_scale=0,
129
+ device=None,
130
+ torch_dtype=None):
131
+ '''
132
+ Args:
133
+ aesthetic_target: float, the target value of the aesthetic score. it is 10 in this experiment
134
+ grad_scale: float, the scale of the gradient. it is 0.1 in this experiment
135
+ device: torch.device, the device to run the model.
136
+ torch_dtype: torch.dtype, the data type of the model.
137
+
138
+ Returns:
139
+ loss_fn: function, the loss function of the aesthetic reward function.
140
+ '''
141
+ target_size = (224, 224)
142
+ normalize = torchvision.transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073],
143
+ std=[0.26862954, 0.26130258, 0.27577711])
144
+
145
+ scorer = AestheticScorerDiff(dtype=torch_dtype).to(device, dtype=torch_dtype)
146
+ scorer.requires_grad_(False)
147
+
148
+ def loss_fn(im_pix_un):
149
+ im_pix = ((im_pix_un / 2) + 0.5).clamp(0, 1)
150
+ im_pix = torchvision.transforms.Resize(target_size)(im_pix)
151
+ im_pix = normalize(im_pix).to(im_pix_un.dtype)
152
+ rewards = scorer(im_pix)
153
+ if aesthetic_target is None: # default maximization
154
+ loss = -1 * rewards
155
+ else:
156
+ # using L1 to keep on same scale
157
+ loss = abs(rewards - aesthetic_target)
158
+ return loss.mean() * grad_scale, rewards.mean()
159
+ return loss_fn
160
+
161
+
162
+ def hps_loss_fn(inference_dtype=None, device=None, hps_version="v2.0"):
163
+ '''
164
+ Args:
165
+ inference_dtype: torch.dtype, the data type of the model.
166
+ device: torch.device, the device to run the model.
167
+ hps_version: str, the version of the HPS model. It is "v2.0" or "v2.1" in this experiment.
168
+
169
+ Returns:
170
+ loss_fn: function, the loss function of the HPS reward function.
171
+ '''
172
+ model_name = "ViT-H-14"
173
+
174
+ model, preprocess_train, preprocess_val = create_model_and_transforms(
175
+ model_name,
176
+ 'laion2B-s32B-b79K',
177
+ precision=inference_dtype,
178
+ device=device,
179
+ jit=False,
180
+ force_quick_gelu=False,
181
+ force_custom_text=False,
182
+ force_patch_dropout=False,
183
+ force_image_size=None,
184
+ pretrained_image=False,
185
+ image_mean=None,
186
+ image_std=None,
187
+ light_augmentation=True,
188
+ aug_cfg={},
189
+ output_dict=True,
190
+ with_score_predictor=False,
191
+ with_region_predictor=False
192
+ )
193
+
194
+ tokenizer = get_tokenizer(model_name)
195
+
196
+ if hps_version == "v2.0": # if there is a error, please download the model manually and set the path
197
+ checkpoint_path = f"{os.path.expanduser('~')}/.cache/huggingface/hub/models--xswu--HPSv2/snapshots/697403c78157020a1ae59d23f111aa58ced35b0a/HPS_v2_compressed.pt"
198
+ else: # hps_version == "v2.1"
199
+ checkpoint_path = f"{os.path.expanduser('~')}/.cache/huggingface/hub/models--xswu--HPSv2/snapshots/697403c78157020a1ae59d23f111aa58ced35b0a/HPS_v2.1_compressed.pt"
200
+ # force download of model via score
201
+ hpsv2.score([], "", hps_version=hps_version)
202
+
203
+ checkpoint = torch.load(checkpoint_path, map_location=device)
204
+ model.load_state_dict(checkpoint['state_dict'])
205
+ tokenizer = get_tokenizer(model_name)
206
+ model = model.to(device, dtype=inference_dtype)
207
+ model.eval()
208
+
209
+ target_size = (224, 224)
210
+ normalize = torchvision.transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073],
211
+ std=[0.26862954, 0.26130258, 0.27577711])
212
+
213
+ def loss_fn(im_pix, prompts):
214
+ im_pix = ((im_pix / 2) + 0.5).clamp(0, 1)
215
+ x_var = torchvision.transforms.Resize(target_size)(im_pix)
216
+ x_var = normalize(x_var).to(im_pix.dtype)
217
+ caption = tokenizer(prompts)
218
+ caption = caption.to(device)
219
+ outputs = model(x_var, caption)
220
+ image_features, text_features = outputs["image_features"], outputs["text_features"]
221
+ logits = image_features @ text_features.T
222
+ scores = torch.diagonal(logits)
223
+ loss = 1.0 - scores
224
+ return loss.mean(), scores.mean()
225
+
226
+ return loss_fn
227
+
228
+ def aesthetic_hps_loss_fn(aesthetic_target=None,
229
+ grad_scale=0,
230
+ inference_dtype=None,
231
+ device=None,
232
+ hps_version="v2.0"):
233
+ '''
234
+ Args:
235
+ aesthetic_target: float, the target value of the aesthetic score. it is 10 in this experiment
236
+ grad_scale: float, the scale of the gradient. it is 0.1 in this experiment
237
+ inference_dtype: torch.dtype, the data type of the model.
238
+ device: torch.device, the device to run the model.
239
+ hps_version: str, the version of the HPS model. It is "v2.0" or "v2.1" in this experiment.
240
+
241
+ Returns:
242
+ loss_fn: function, the loss function of a combination of aesthetic and HPS reward function.
243
+ '''
244
+ # HPS
245
+ model_name = "ViT-H-14"
246
+
247
+ model, preprocess_train, preprocess_val = create_model_and_transforms(
248
+ model_name,
249
+ 'laion2B-s32B-b79K',
250
+ precision=inference_dtype,
251
+ device=device,
252
+ jit=False,
253
+ force_quick_gelu=False,
254
+ force_custom_text=False,
255
+ force_patch_dropout=False,
256
+ force_image_size=None,
257
+ pretrained_image=False,
258
+ image_mean=None,
259
+ image_std=None,
260
+ light_augmentation=True,
261
+ aug_cfg={},
262
+ output_dict=True,
263
+ with_score_predictor=False,
264
+ with_region_predictor=False
265
+ )
266
+
267
+ # tokenizer = get_tokenizer(model_name)
268
+
269
+ if hps_version == "v2.0": # if there is a error, please download the model manually and set the path
270
+ checkpoint_path = f"{os.path.expanduser('~')}/.cache/huggingface/hub/models--xswu--HPSv2/snapshots/697403c78157020a1ae59d23f111aa58ced35b0a/HPS_v2_compressed.pt"
271
+ else: # hps_version == "v2.1"
272
+ checkpoint_path = f"{os.path.expanduser('~')}/.cache/huggingface/hub/models--xswu--HPSv2/snapshots/697403c78157020a1ae59d23f111aa58ced35b0a/HPS_v2.1_compressed.pt"
273
+ # force download of model via score
274
+ hpsv2.score([], "", hps_version=hps_version)
275
+
276
+ checkpoint = torch.load(checkpoint_path, map_location=device)
277
+ model.load_state_dict(checkpoint['state_dict'])
278
+ tokenizer = get_tokenizer(model_name)
279
+ model = model.to(device, dtype=inference_dtype)
280
+ model.eval()
281
+
282
+ target_size = (224, 224)
283
+ normalize = torchvision.transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073],
284
+ std=[0.26862954, 0.26130258, 0.27577711])
285
+ # Aesthetic
286
+ scorer = AestheticScorerDiff(dtype=inference_dtype).to(device, dtype=inference_dtype)
287
+ scorer.requires_grad_(False)
288
+
289
+ def loss_fn(im_pix_un, prompts):
290
+ # Aesthetic
291
+ im_pix = ((im_pix_un / 2) + 0.5).clamp(0, 1)
292
+ im_pix = torchvision.transforms.Resize(target_size)(im_pix)
293
+ im_pix = normalize(im_pix).to(im_pix_un.dtype)
294
+
295
+ aesthetic_rewards = scorer(im_pix)
296
+ if aesthetic_target is None: # default maximization
297
+ aesthetic_loss = -1 * aesthetic_rewards
298
+ else:
299
+ # using L1 to keep on same scale
300
+ aesthetic_loss = abs(aesthetic_rewards - aesthetic_target)
301
+ aesthetic_loss = aesthetic_loss.mean() * grad_scale
302
+ aesthetic_rewards = aesthetic_rewards.mean()
303
+
304
+ # HPS
305
+ caption = tokenizer(prompts)
306
+ caption = caption.to(device)
307
+ outputs = model(im_pix, caption)
308
+ image_features, text_features = outputs["image_features"], outputs["text_features"]
309
+ logits = image_features @ text_features.T
310
+ scores = torch.diagonal(logits)
311
+ hps_loss = abs(1.0 - scores)
312
+ hps_loss = hps_loss.mean()
313
+ hps_rewards = scores.mean()
314
+
315
+ loss = (1.5 * aesthetic_loss + hps_loss) /2 # 1.5 is a hyperparameter. Set it to 1.5 because experimentally hps_loss is 1.5 times larger than aesthetic_loss
316
+ rewards = (aesthetic_rewards + 15 * hps_rewards) / 2 # 15 is a hyperparameter. Set it to 15 because experimentally aesthetic_rewards is 15 times larger than hps_reward
317
+ return loss, rewards
318
+
319
+ return loss_fn
320
+
321
+ def pick_score_loss_fn(inference_dtype=None, device=None):
322
+ '''
323
+ Args:
324
+ inference_dtype: torch.dtype, the data type of the model.
325
+ device: torch.device, the device to run the model.
326
+
327
+ Returns:
328
+ loss_fn: function, the loss function of the PickScore reward function.
329
+ '''
330
+ processor_name_or_path = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
331
+ model_pretrained_name_or_path = "yuvalkirstain/PickScore_v1"
332
+ processor = AutoProcessor.from_pretrained(processor_name_or_path, torch_dtype=inference_dtype)
333
+ model = AutoModel.from_pretrained(model_pretrained_name_or_path, torch_dtype=inference_dtype).eval().to(device)
334
+ model.requires_grad_(False)
335
+
336
+ def loss_fn(im_pix_un, prompts): # im_pix_un: b,c,h,w
337
+ im_pix = ((im_pix_un / 2) + 0.5).clamp(0, 1)
338
+
339
+ # reproduce the pick_score preprocessing
340
+ im_pix = im_pix * 255 # b,c,h,w
341
+
342
+ if im_pix.shape[2] < im_pix.shape[3]:
343
+ height = 224
344
+ width = im_pix.shape[3] * height // im_pix.shape[2] # keep the aspect ratio, so the width is w * 224/h
345
+ else:
346
+ width = 224
347
+ height = im_pix.shape[2] * width // im_pix.shape[3] # keep the aspect ratio, so the height is h * 224/w
348
+
349
+ # interpolation and antialiasing should be the same as below
350
+ im_pix = torchvision.transforms.Resize((height, width),
351
+ interpolation=torchvision.transforms.InterpolationMode.BICUBIC,
352
+ antialias=True)(im_pix)
353
+ im_pix = im_pix.permute(0, 2, 3, 1) # b,c,h,w -> (b,h,w,c)
354
+ # crop the center 224x224
355
+ startx = width//2 - (224//2)
356
+ starty = height//2 - (224//2)
357
+ im_pix = im_pix[:, starty:starty+224, startx:startx+224, :]
358
+ # do rescale and normalize as CLIP
359
+ im_pix = im_pix * 0.00392156862745098 # rescale factor
360
+ mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).to(device)
361
+ std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).to(device)
362
+ im_pix = (im_pix - mean) / std
363
+ im_pix = im_pix.permute(0, 3, 1, 2) # BHWC -> BCHW
364
+
365
+ text_inputs = processor(
366
+ text=prompts,
367
+ padding=True,
368
+ truncation=True,
369
+ max_length=77,
370
+ return_tensors="pt",
371
+ ).to(device)
372
+
373
+
374
+ # embed
375
+ image_embs = model.get_image_features(pixel_values=im_pix)
376
+ image_embs = image_embs / torch.norm(image_embs, dim=-1, keepdim=True)
377
+
378
+ text_embs = model.get_text_features(**text_inputs)
379
+ text_embs = text_embs / torch.norm(text_embs, dim=-1, keepdim=True)
380
+
381
+ # score
382
+ scores = model.logit_scale.exp() * (text_embs @ image_embs.T)[0]
383
+ loss = abs(1.0 - scores / 100.0)
384
+ return loss.mean(), scores.mean()
385
+
386
+ return loss_fn
387
+
388
+ def weather_loss_fn(inference_dtype=None, device=None, weather="rainy", target=None, grad_scale=0):
389
+ '''
390
+ Args:
391
+ inference_dtype: torch.dtype, the data type of the model.
392
+ device: torch.device, the device to run the model.
393
+ weather: str, the weather condition. It is "rainy" or "snowy" in this experiment.
394
+ target: float, the target value of the weather score. It is 1.0 in this experiment.
395
+ grad_scale: float, the scale of the gradient. It is 1 in this experiment.
396
+
397
+ Returns:
398
+ loss_fn: function, the loss function of the weather reward function.
399
+ '''
400
+ if weather == "rainy":
401
+ reward_model_path = "../assets/rainy_reward.pt"
402
+ elif weather == "snowy":
403
+ reward_model_path = "../assets/snowy_reward.pt"
404
+ else:
405
+ raise NotImplementedError
406
+ scorer = WeatherScorer(dtype=inference_dtype, model_path=reward_model_path).to(device, dtype=inference_dtype)
407
+ scorer.requires_grad_(False)
408
+ scorer.eval()
409
+ def loss_fn(im_pix_un):
410
+ im_pix = ((im_pix_un + 1) / 2).clamp(0, 1) # from [-1, 1] to [0, 1]
411
+ rewards = scorer(im_pix)
412
+
413
+ if target is None:
414
+ loss = rewards
415
+ else:
416
+ loss = abs(rewards - target)
417
+
418
+ return loss.mean() * grad_scale, rewards.mean()
419
+ return loss_fn
420
+
421
+ def objectDetection_loss_fn(inference_dtype=None, device=None, targetObject='dog.', model_name='grounding-dino-base'):
422
+ '''
423
+ This reward function is used to remove the target object from the generated video.
424
+ We use yolo-s-tiny model to detect the target object in the generated video.
425
+
426
+ Args:
427
+ inference_dtype: torch.dtype, the data type of the model.
428
+ device: torch.device, the device to run the model.
429
+ targetObject: str, the object to detect. It is "dog" in this experiment.
430
+
431
+ Returns:
432
+ loss_fn: function, the loss function of the object detection reward function.
433
+ '''
434
+ if model_name == "yolos-base":
435
+ image_processor = AutoImageProcessor.from_pretrained("hustvl/yolos-base", torch_dtype=inference_dtype)
436
+ model = AutoModelForObjectDetection.from_pretrained("hustvl/yolos-base", torch_dtype=inference_dtype).to(device)
437
+ # check if "." in the targetObject name for yolos model
438
+ if "." in targetObject:
439
+ raise ValueError("The targetObject name should not contain '.' for yolos-base model.")
440
+ elif model_name == "yolos-tiny":
441
+ image_processor = AutoImageProcessor.from_pretrained("hustvl/yolos-tiny", torch_dtype=inference_dtype)
442
+ model = AutoModelForObjectDetection.from_pretrained("hustvl/yolos-tiny", torch_dtype=inference_dtype).to(device)
443
+ # check if "." in the targetObject name for yolos model
444
+ if "." in targetObject:
445
+ raise ValueError("The targetObject name should not contain '.' for yolos-tiny model.")
446
+ elif model_name == "grounding-dino-base":
447
+ image_processor = AutoProcessor.from_pretrained("IDEA-Research/grounding-dino-base", torch_dtype=inference_dtype)
448
+ model = AutoModelForZeroShotObjectDetection.from_pretrained("IDEA-Research/grounding-dino-base",torch_dtype=inference_dtype).to(device)
449
+ # check if "." in the targetObject name for grounding-dino model
450
+ if "." not in targetObject:
451
+ raise ValueError("The targetObject name should contain '.' for grounding-dino-base model.")
452
+ elif model_name == "grounding-dino-tiny":
453
+ image_processor = AutoProcessor.from_pretrained("IDEA-Research/grounding-dino-tiny", torch_dtype=inference_dtype)
454
+ model = AutoModelForZeroShotObjectDetection.from_pretrained("IDEA-Research/grounding-dino-tiny", torch_dtype=inference_dtype).to(device)
455
+ # check if "." in the targetObject name for grounding-dino model
456
+ if "." not in targetObject:
457
+ raise ValueError("The targetObject name should contain '.' for grounding-dino-tiny model.")
458
+ else:
459
+ raise NotImplementedError
460
+
461
+ model.requires_grad_(False)
462
+ model.eval()
463
+
464
+ def loss_fn(im_pix_un): # im_pix_un: b,c,h,w
465
+ images = ((im_pix_un / 2) + 0.5).clamp(0.0, 1.0)
466
+
467
+ # reproduce the yolo preprocessing
468
+ height = 512
469
+ width = 512 * images.shape[3] // images.shape[2] # keep the aspect ratio, so the width is 512 * w/h
470
+ images = torchvision.transforms.Resize((height, width), antialias=False)(images)
471
+ images = images.permute(0, 2, 3, 1) # b,c,h,w -> (b,h,w,c)
472
+
473
+ image_mean = torch.tensor([0.485, 0.456, 0.406]).to(device)
474
+ image_std = torch.tensor([0.229, 0.224, 0.225]).to(device)
475
+
476
+ images = (images - image_mean) / image_std
477
+ normalized_image = images.permute(0,3,1,2) # NHWC -> NCHW
478
+
479
+ # Process images
480
+ if model_name == "yolos-base" or model_name == "yolos-tiny":
481
+ outputs = model(pixel_values=normalized_image)
482
+ else: # grounding-dino model
483
+ inputs = image_processor(text=targetObject, return_tensors="pt").to(device)
484
+ outputs = model(pixel_values=normalized_image, input_ids=inputs.input_ids)
485
+
486
+ # Get target sizes for each image
487
+ target_sizes = torch.tensor([normalized_image[0].shape[1:]]*normalized_image.shape[0]).to(device)
488
+
489
+ # Post-process results for each image
490
+ if model_name == "yolos-base" or model_name == "yolos-tiny":
491
+ results = image_processor.post_process_object_detection(outputs, threshold=0.2, target_sizes=target_sizes)
492
+ else: # grounding-dino model
493
+ results = image_processor.post_process_grounded_object_detection(
494
+ outputs,
495
+ inputs.input_ids,
496
+ box_threshold=0.4,
497
+ text_threshold=0.3,
498
+ target_sizes=target_sizes
499
+ )
500
+
501
+ sum_avg_scores = 0
502
+ for i, result in enumerate(results):
503
+ if model_name == "yolos-base" or model_name == "yolos-tiny":
504
+ id = model.config.label2id[targetObject]
505
+ # get index of targetObject's label
506
+ index = torch.where(result["labels"] == id)
507
+ if len(index[0]) == 0: # index: ([],[]) so index[0] is the first list
508
+ sum_avg_scores = torch.sum(outputs.logits - outputs.logits) # set sum_avg_scores to 0
509
+ continue
510
+ scores = result["scores"][index]
511
+ else: # grounding-dino model
512
+ if result["scores"].shape[0] == 0:
513
+ sum_avg_scores = torch.sum(outputs.last_hidden_state - outputs.last_hidden_state) # set sum_avg_scores to 0
514
+ continue
515
+ scores = result["scores"]
516
+ sum_avg_scores = sum_avg_scores + (torch.sum(scores) / scores.shape[0])
517
+
518
+ loss = sum_avg_scores / len(results)
519
+ reward = 1 - loss
520
+
521
+ return loss, reward
522
+ return loss_fn
523
+
524
+ def compression_loss_fn(inference_dtype=None, device=None, target=None, grad_scale=0, model_path=None):
525
+ '''
526
+ Args:
527
+ inference_dtype: torch.dtype, the data type of the model.
528
+ device: torch.device, the device to run the model.
529
+ model_path: str, the path of the compression model.
530
+
531
+ Returns:
532
+ loss_fn: function, the loss function of the compression reward function.
533
+ '''
534
+ scorer = JpegCompressionScorer(dtype=inference_dtype, model_path=model_path).to(device, dtype=inference_dtype)
535
+ scorer.requires_grad_(False)
536
+ scorer.eval()
537
+ def loss_fn(im_pix_un):
538
+ im_pix = ((im_pix_un + 1) / 2).clamp(0, 1)
539
+ rewards = scorer(im_pix)
540
+
541
+ if target is None:
542
+ loss = rewards
543
+ else:
544
+ loss = abs(rewards - target)
545
+ return loss.mean() * grad_scale, rewards.mean()
546
+
547
+ return loss_fn
548
+
549
+ def actpred_loss_fn(inference_dtype=None, device=None, num_frames = 14, target_size=224):
550
+ scorer = ActPredScorer(device=device, num_frames = num_frames, dtype=inference_dtype)
551
+ scorer.requires_grad_(False)
552
+
553
+ def preprocess_img(img):
554
+ img = ((img/2) + 0.5).clamp(0,1)
555
+ img = torchvision.transforms.Resize((target_size, target_size), antialias = True)(img)
556
+ img = torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])(img)
557
+ return img
558
+ def loss_fn(vid, target_action_label):
559
+ vid = torch.cat([preprocess_img(img).unsqueeze(0) for img in vid])[None]
560
+ return scorer.get_loss_and_score(vid, target_action_label)
561
+
562
+ return loss_fn
563
+
564
+
565
+ def should_sample(global_step, validation_steps, is_sample_preview):
566
+ return (global_step % validation_steps == 0 or global_step ==1) \
567
+ and is_sample_preview
568
+
569
+
570
+ def run_training(args, peft_model, **kwargs):
571
+ ## ---------------------step 1: accelerator setup---------------------------
572
+ accelerator = Accelerator( # Initialize Accelerator
573
+ gradient_accumulation_steps=args.gradient_accumulation_steps,
574
+ mixed_precision=args.mixed_precision,
575
+ project_dir=args.project_dir
576
+
577
+ )
578
+ output_dir = args.project_dir
579
+
580
+ # Make one log on every process with the configuration for debugging.
581
+ create_logging(logging, logger, accelerator)
582
+
583
+ # ## ------------------------step 2: model config-----------------------------
584
+ # # download the checkpoint for VideoCrafter2 model
585
+ # ckpt_dir = args.ckpt_path.split('/') # args.ckpt='checkpoints/base_512_v2/model.ckpt' -> 'checkpoints/base_512_v2'
586
+ # ckpt_dir = '/'.join(ckpt_dir[:-1])
587
+ # snapshot_download(repo_id='VideoCrafter/VideoCrafter2', local_dir =ckpt_dir)
588
+
589
+ # # load the model
590
+ # config = OmegaConf.load(args.config)
591
+ # model_config = config.pop("model", OmegaConf.create())
592
+ # model = instantiate_from_config(model_config)
593
+
594
+ # assert os.path.exists(args.ckpt_path), f"Error: checkpoint [{args.ckpt_path}] Not Found!"
595
+ # model = load_model_checkpoint(model, args.ckpt_path)
596
+
597
+
598
+ # # convert first_stage_model and cond_stage_model to torch.float16 if mixed_precision is True
599
+ # if args.mixed_precision != 'no':
600
+ # model.first_stage_model = model.first_stage_model.half()
601
+ # model.cond_stage_model = model.cond_stage_model.half()
602
+
603
+ # # step 2.1: add LoRA using peft
604
+ # config = peft.LoraConfig(
605
+ # r=args.lora_rank,
606
+ # target_modules=["to_k", "to_v", "to_q"], # only diffusion_model has these modules
607
+ # lora_dropout=0.01,
608
+ # )
609
+
610
+ # peft_model = peft.get_peft_model(model, config)
611
+
612
+ # peft_model.print_trainable_parameters()
613
+
614
+ # # load the pretrained LoRA model
615
+ # if args.lora_ckpt_path is not None:
616
+ # if args.lora_ckpt_path == "huggingface-hps-aesthetic": # download the pretrained LoRA model from huggingface
617
+ # snapshot_download(repo_id='zheyangqin/VADER', local_dir ='VADER-VideoCrafter/checkpoints/pretrained_lora')
618
+ # args.lora_ckpt_path = 'VADER-VideoCrafter/checkpoints/pretrained_lora/vader_videocrafter_hps_aesthetic.pt'
619
+ # elif args.lora_ckpt_path == "huggingface-pickscore": # download the pretrained LoRA model from huggingface
620
+ # snapshot_download(repo_id='zheyangqin/VADER', local_dir ='VADER-VideoCrafter/checkpoints/pretrained_lora')
621
+ # args.lora_ckpt_path = 'VADER-VideoCrafter/checkpoints/pretrained_lora/vader_videocrafter_pickscore.pt'
622
+ # # load the pretrained LoRA model
623
+ # peft.set_peft_model_state_dict(peft_model, torch.load(args.lora_ckpt_path))
624
+
625
+ # Inference Step: only do inference and save the videos. Skip this step if it is training
626
+ # ==================================================================
627
+ if args.inference_only:
628
+ peft_model = accelerator.prepare(peft_model)
629
+ # sample shape
630
+ assert (args.height % 16 == 0) and (args.width % 16 == 0), "Error: image size [h,w] should be multiples of 16!"
631
+ # latent noise shape
632
+ h, w = args.height // 8, args.width // 8
633
+ if isinstance(peft_model, torch.nn.parallel.DistributedDataParallel):
634
+ frames = peft_model.module.temporal_length if args.frames < 0 else args.frames
635
+ channels = peft_model.module.channels
636
+ else:
637
+ frames = peft_model.temporal_length if args.frames < 0 else args.frames
638
+ channels = peft_model.channels
639
+
640
+ ## Inference step 2: run Inference over samples
641
+ logger.info("***** Running inference *****")
642
+
643
+ first_epoch = 0
644
+ global_step = 0
645
+
646
+
647
+ ## Inference Step 3: generate new validation videos
648
+ with torch.no_grad():
649
+
650
+ # set random seed for each process
651
+ random.seed(args.seed)
652
+ torch.manual_seed(args.seed)
653
+
654
+ prompts_all = [args.prompt_str]
655
+ val_prompt = list(prompts_all)
656
+
657
+ assert len(val_prompt) == 1, "Error: only one prompt is allowed for inference in gradio!"
658
+
659
+ # store output of generations in dict
660
+ results=dict(filenames=[],dir_name=[], prompt=[])
661
+
662
+ # Inference Step 3.1: forward pass
663
+ batch_size = len(val_prompt)
664
+ noise_shape = [batch_size, channels, frames, h, w]
665
+
666
+ fps = torch.tensor([args.fps]*batch_size).to(accelerator.device).long()
667
+
668
+ prompts = val_prompt
669
+ if isinstance(prompts, str):
670
+ prompts = [prompts]
671
+
672
+
673
+ with accelerator.autocast(): # mixed precision
674
+ if isinstance(peft_model, torch.nn.parallel.DistributedDataParallel):
675
+ text_emb = peft_model.module.get_learned_conditioning(prompts).to(accelerator.device)
676
+ else:
677
+ text_emb = peft_model.get_learned_conditioning(prompts).to(accelerator.device)
678
+
679
+ if args.mode == 'base':
680
+ cond = {"c_crossattn": [text_emb], "fps": fps}
681
+ else: # TODO: implement i2v mode training in the future
682
+ raise NotImplementedError
683
+
684
+ # Inference Step 3.2: inference, batch_samples shape: batch, <samples>, c, t, h, w
685
+ # no backprop_mode=args.backprop_mode because it is inference process
686
+ if isinstance(peft_model, torch.nn.parallel.DistributedDataParallel):
687
+ batch_samples = batch_ddim_sampling(peft_model.module, cond, noise_shape, args.n_samples, \
688
+ args.ddim_steps, args.ddim_eta, args.unconditional_guidance_scale, None, decode_frame=args.decode_frame, **kwargs)
689
+ else:
690
+ batch_samples = batch_ddim_sampling(peft_model, cond, noise_shape, args.n_samples, \
691
+ args.ddim_steps, args.ddim_eta, args.unconditional_guidance_scale, None, decode_frame=args.decode_frame, **kwargs)
692
+
693
+ # batch_samples: b,samples,c,t,h,w
694
+ dir_name = os.path.join(output_dir, "samples")
695
+ # filenames should be related to the gpu index
696
+ # get timestamps for filenames to avoid overwriting
697
+ # current_time = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
698
+ filenames = [f"temporal"] # only one sample
699
+ # if dir_name is not exists, create it
700
+ os.makedirs(dir_name, exist_ok=True)
701
+
702
+ save_videos(batch_samples, dir_name, filenames, fps=args.savefps)
703
+
704
+ results["filenames"].extend(filenames)
705
+ results["dir_name"].extend([dir_name]*len(filenames))
706
+ results["prompt"].extend(prompts)
707
+ results=[ results ] # transform to list, otherwise gather_object() will not collect correctly
708
+
709
+ # Inference Step 3.3: collect inference results and save the videos to wandb
710
+ # collect inference results from all the GPUs
711
+ results_gathered=gather_object(results)
712
+
713
+ if accelerator.is_main_process:
714
+ filenames = []
715
+ dir_name = []
716
+ prompts = []
717
+ for i in range(len(results_gathered)):
718
+ filenames.extend(results_gathered[i]["filenames"])
719
+ dir_name.extend(results_gathered[i]["dir_name"])
720
+ prompts.extend(results_gathered[i]["prompt"])
721
+
722
+ logger.info("Validation sample saved!")
723
+
724
+ # # batch size is 1, so only one video is generated
725
+
726
+ # video = get_videos(batch_samples)
727
+
728
+ # # read the video from the saved path
729
+ video_path = os.path.join(dir_name[0], filenames[0]+".mp4")
730
+
731
+
732
+
733
+ # release memory
734
+ del batch_samples
735
+ torch.cuda.empty_cache()
736
+ gc.collect()
737
+
738
+ return video_path
739
+
740
+ # end of inference only, training script continues
741
+ # ==================================================================
742
+
743
+
744
+ def setup_model(lora_ckpt_path="huggingface-pickscore", lora_rank=16):
745
+ parser = get_parser()
746
+ args = parser.parse_args()
747
+
748
+ ## ------------------------step 2: model config-----------------------------
749
+ # download the checkpoint for VideoCrafter2 model
750
+ ckpt_dir = args.ckpt_path.split('/') # args.ckpt='checkpoints/base_512_v2/model.ckpt' -> 'checkpoints/base_512_v2'
751
+ ckpt_dir = '/'.join(ckpt_dir[:-1])
752
+ snapshot_download(repo_id='VideoCrafter/VideoCrafter2', local_dir =ckpt_dir)
753
+
754
+ # load the model
755
+ config = OmegaConf.load(args.config)
756
+ model_config = config.pop("model", OmegaConf.create())
757
+ model = instantiate_from_config(model_config)
758
+
759
+ assert os.path.exists(args.ckpt_path), f"Error: checkpoint [{args.ckpt_path}] Not Found!"
760
+ model = load_model_checkpoint(model, args.ckpt_path)
761
+
762
+ # convert first_stage_model and cond_stage_model to torch.float16 if mixed_precision is True
763
+ if args.mixed_precision != 'no':
764
+ model.first_stage_model = model.first_stage_model.half()
765
+ model.cond_stage_model = model.cond_stage_model.half()
766
+
767
+ # step 2.1: add LoRA using peft
768
+ config = peft.LoraConfig(
769
+ r=args.lora_rank,
770
+ target_modules=["to_k", "to_v", "to_q"], # only diffusion_model has these modules
771
+ lora_dropout=0.01,
772
+ )
773
+
774
+ peft_model = peft.get_peft_model(model, config)
775
+
776
+ peft_model.print_trainable_parameters()
777
+
778
+ # load the pretrained LoRA model
779
+ if lora_ckpt_path != "Base Model":
780
+ if lora_ckpt_path == "huggingface-hps-aesthetic": # download the pretrained LoRA model from huggingface
781
+ snapshot_download(repo_id='zheyangqin/VADER', local_dir ='VADER-VideoCrafter/checkpoints/pretrained_lora')
782
+ lora_ckpt_path = 'VADER-VideoCrafter/checkpoints/pretrained_lora/vader_videocrafter_hps_aesthetic.pt'
783
+ elif lora_ckpt_path == "huggingface-pickscore": # download the pretrained LoRA model from huggingface
784
+ snapshot_download(repo_id='zheyangqin/VADER', local_dir ='VADER-VideoCrafter/checkpoints/pretrained_lora')
785
+ lora_ckpt_path = 'VADER-VideoCrafter/checkpoints/pretrained_lora/vader_videocrafter_pickscore.pt'
786
+ # load the pretrained LoRA model
787
+ peft.set_peft_model_state_dict(peft_model, torch.load(lora_ckpt_path))
788
+
789
+ print("Model setup complete!")
790
+ return peft_model
791
+
792
+
793
+ def main_fn(prompt, seed=200, height=320, width=512, unconditional_guidance_scale=12, ddim_steps=25, ddim_eta=1.0,
794
+ frames=24, savefps=10, model=None):
795
+
796
+ parser = get_parser()
797
+ args = parser.parse_args()
798
+
799
+
800
+
801
+ # overwrite the default arguments
802
+ args.prompt_str = prompt
803
+ args.seed = seed
804
+ args.height = height
805
+ args.width = width
806
+ args.unconditional_guidance_scale = unconditional_guidance_scale
807
+ args.ddim_steps = ddim_steps
808
+ args.ddim_eta = ddim_eta
809
+ args.frames = frames
810
+ args.savefps = savefps
811
+
812
+ seed_everything(args.seed)
813
+
814
+ video_path = run_training(args, model)
815
+
816
+ return video_path
817
+
VADER-VideoCrafter/scripts/run_text2video_inference.sh ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ckpt='checkpoints/base_512_v2/model.ckpt'
2
+ config='configs/inference_t2v_512_v2.0.yaml'
3
+ PORT=$((20000 + RANDOM % 10000))
4
+
5
+ accelerate launch --multi_gpu --main_process_port $PORT scripts/main/train_t2v_lora.py \
6
+ --seed 200 \
7
+ --mode 'base' \
8
+ --ckpt_path $ckpt \
9
+ --config $config \
10
+ --height 320 --width 512 \
11
+ --unconditional_guidance_scale 12.0 \
12
+ --ddim_steps 25 \
13
+ --ddim_eta 1.0 \
14
+ --frames 24 \
15
+ --prompt_fn 'chatgpt_custom_cute' \
16
+ --val_batch_size 1 \
17
+ --num_val_runs 1 \
18
+ --lora_rank 16 \
19
+ --inference_only True \
20
+ --project_dir ./project_dir/inference \
21
+ --lora_ckpt_path huggingface-pickscore \
22
+ --is_sample_preview True
23
+
24
+
25
+
26
+ ckpt='checkpoints/base_512_v2/model.ckpt'
27
+ config='configs/inference_t2v_512_v2.0.yaml'
28
+ PORT=$((20000 + RANDOM % 10000))
29
+
30
+ accelerate launch --multi_gpu --main_process_port 15009 scripts/main/train_t2v_lora.py --seed 200 --mode 'base' --ckpt_path 'checkpoints/base_512_v2/model.ckpt' --config 'configs/inference_t2v_512_v2.0.yaml' --height 320 --width 512 --unconditional_guidance_scale 12.0 --ddim_steps 25 --ddim_eta 1.0 --frames 24 --prompt_fn 'chatgpt_custom_cute' --val_batch_size 1 --num_val_runs 1 --lora_rank 16 --inference_only True --project_dir ./project_dir/inference --lora_ckpt_path huggingface-pickscore --is_sample_preview True
VADER-VideoCrafter/scripts/run_text2video_train.sh ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ckpt='checkpoints/base_512_v2/model.ckpt'
2
+ config='configs/inference_t2v_512_v2.0.yaml'
3
+ PORT=$((20000 + RANDOM % 10000))
4
+
5
+ accelerate launch --multi_gpu --main_process_port $PORT scripts/main/train_t2v_lora.py \
6
+ --seed 300 \
7
+ --mode 'base' \
8
+ --ckpt_path $ckpt \
9
+ --config $config \
10
+ --height 320 --width 512 \
11
+ --unconditional_guidance_scale 12.0 \
12
+ --ddim_steps 25 \
13
+ --ddim_eta 1.0 \
14
+ --frames 12 \
15
+ --prompt_fn 'chatgpt_custom_instruments' \
16
+ --gradient_accumulation_steps 8 \
17
+ --num_train_epochs 200 \
18
+ --train_batch_size 1 \
19
+ --val_batch_size 1 \
20
+ --num_val_runs 1 \
21
+ --reward_fn 'aesthetic_hps' \
22
+ --decode_frame '-1' \
23
+ --hps_version 'v2.1' \
24
+ --lr 0.0002 \
25
+ --validation_steps 10 \
26
+ --lora_rank 16 \
27
+ --is_sample_preview True
28
+
VADER-VideoCrafter/utils/utils.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import importlib
2
+ import numpy as np
3
+ import cv2
4
+ import torch
5
+ import torch.distributed as dist
6
+
7
+
8
+ def count_params(model, verbose=False):
9
+ total_params = sum(p.numel() for p in model.parameters())
10
+ if verbose:
11
+ print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.")
12
+ return total_params
13
+
14
+
15
+ def check_istarget(name, para_list):
16
+ """
17
+ name: full name of source para
18
+ para_list: partial name of target para
19
+ """
20
+ istarget=False
21
+ for para in para_list:
22
+ if para in name:
23
+ return True
24
+ return istarget
25
+
26
+
27
+ def instantiate_from_config(config):
28
+ if not "target" in config:
29
+ if config == '__is_first_stage__':
30
+ return None
31
+ elif config == "__is_unconditional__":
32
+ return None
33
+ raise KeyError("Expected key `target` to instantiate.")
34
+ return get_obj_from_str(config["target"])(**config.get("params", dict()))
35
+
36
+
37
+ def get_obj_from_str(string, reload=False):
38
+ module, cls = string.rsplit(".", 1)
39
+ if reload:
40
+ module_imp = importlib.import_module(module)
41
+ importlib.reload(module_imp)
42
+ return getattr(importlib.import_module(module, package=None), cls)
43
+
44
+
45
+ def load_npz_from_dir(data_dir):
46
+ data = [np.load(os.path.join(data_dir, data_name))['arr_0'] for data_name in os.listdir(data_dir)]
47
+ data = np.concatenate(data, axis=0)
48
+ return data
49
+
50
+
51
+ def load_npz_from_paths(data_paths):
52
+ data = [np.load(data_path)['arr_0'] for data_path in data_paths]
53
+ data = np.concatenate(data, axis=0)
54
+ return data
55
+
56
+
57
+ def resize_numpy_image(image, max_resolution=512 * 512, resize_short_edge=None):
58
+ h, w = image.shape[:2]
59
+ if resize_short_edge is not None:
60
+ k = resize_short_edge / min(h, w)
61
+ else:
62
+ k = max_resolution / (h * w)
63
+ k = k**0.5
64
+ h = int(np.round(h * k / 64)) * 64
65
+ w = int(np.round(w * k / 64)) * 64
66
+ image = cv2.resize(image, (w, h), interpolation=cv2.INTER_LANCZOS4)
67
+ return image
68
+
69
+
70
+ def setup_dist(args):
71
+ if dist.is_initialized():
72
+ return
73
+ torch.cuda.set_device(args.local_rank)
74
+ torch.distributed.init_process_group(
75
+ 'nccl',
76
+ init_method='env://'
77
+ )
app.py CHANGED
@@ -1,7 +1,210 @@
1
  import gradio as gr
 
2
 
3
- def greet(name):
4
- return "Hello " + name + "!!"
 
 
5
 
6
- demo = gr.Interface(fn=greet, inputs="text", outputs="text")
7
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ import os
3
 
4
+ import sys
5
+ sys.path.append('./VADER-VideoCrafter/scripts/main')
6
+ sys.path.append('./VADER-VideoCrafter/scripts')
7
+ sys.path.append('./VADER-VideoCrafter')
8
 
9
+ from train_t2v_lora import main_fn, setup_model
10
+
11
+ model = None # Placeholder for model
12
+
13
+ def gradio_main_fn(prompt, seed, height, width, unconditional_guidance_scale, ddim_steps, ddim_eta,
14
+ frames, savefps):
15
+ global model
16
+ if model is None:
17
+ return "Model is not loaded. Please load the model first."
18
+ video_path = main_fn(prompt=prompt,
19
+ seed=int(seed),
20
+ height=int(height),
21
+ width=int(width),
22
+ unconditional_guidance_scale=float(unconditional_guidance_scale),
23
+ ddim_steps=int(ddim_steps),
24
+ ddim_eta=float(ddim_eta),
25
+ frames=int(frames),
26
+ savefps=int(savefps),
27
+ model=model)
28
+
29
+ return video_path
30
+
31
+ def reset_fn():
32
+ return ("A mermaid with flowing hair and a shimmering tail discovers a hidden underwater kingdom adorned with coral palaces, glowing pearls, and schools of colorful fish, encountering both wonders and dangers along the way.",
33
+ 200, 320, 512, 12.0, 25, 1.0, 24, 16, 10, "huggingface-pickscore")
34
+
35
+ def update_lora_rank(lora_model):
36
+ if lora_model == "huggingface-pickscore":
37
+ return gr.update(value=16)
38
+ elif lora_model == "huggingface-hps-aesthetic":
39
+ return gr.update(value=8)
40
+ else: # "Base Model"
41
+ return gr.update(value=0)
42
+
43
+ def update_dropdown(lora_rank):
44
+ if lora_rank == 16:
45
+ return gr.update(value="huggingface-pickscore")
46
+ elif lora_rank == 8:
47
+ return gr.update(value="huggingface-hps-aesthetic")
48
+ else: # 0
49
+ return gr.update(value="Base Model")
50
+
51
+
52
+ def setup_model_progress(lora_model, lora_rank):
53
+ global model
54
+
55
+ # Disable buttons and show loading indicator
56
+ yield (gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False), "Loading model...")
57
+
58
+ model = setup_model(lora_model, lora_rank) # Ensure you pass the necessary parameters to the setup_model function
59
+
60
+ # Enable buttons after loading and update indicator
61
+ yield (gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True), "Model loaded successfully")
62
+
63
+ css = """
64
+ .centered {
65
+ display: flex;
66
+ justify-content: center;
67
+ }
68
+ """
69
+
70
+
71
+ with gr.Blocks(css=css) as demo:
72
+ with gr.Row():
73
+ with gr.Column():
74
+ gr.HTML(
75
+ """
76
+ <h1 style='text-align: center; font-size: 3.2em; margin-bottom: 0.5em; font-family: Arial, sans-serif; margin: 20px;'>
77
+ Video Diffusion Alignment via Reward Gradient
78
+ </h1>
79
+ """
80
+ )
81
+ gr.HTML(
82
+ """
83
+ <style>
84
+ body {
85
+ font-family: Arial, sans-serif;
86
+ text-align: center;
87
+ margin: 50px;
88
+ }
89
+ a {
90
+ text-decoration: none !important;
91
+ color: black !important;
92
+ }
93
+
94
+ </style>
95
+ <body>
96
+ <div style="font-size: 1.4em; margin-bottom: 0.5em; ">
97
+ <a href="https://mihirp1998.github.io">Mihir Prabhudesai</a><sup>*</sup>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
98
+ <a href="https://russellmendonca.github.io/">Russell Mendonca</a><sup>*</sup>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
99
+ <a href="mailto: zheyangqin.qzy@gmail.com">Zheyang Qin</a><sup>*</sup>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
100
+ <a href="https://www.cs.cmu.edu/~katef/">Katerina Fragkiadaki</a><sup></sup>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
101
+ <a href="https://www.cs.cmu.edu/~dpathak/">Deepak Pathak</a><sup></sup>
102
+
103
+
104
+ </div>
105
+ <div style="font-size: 1.3em; font-style: italic;">
106
+ Carnegie Mellon University
107
+ </div>
108
+ </body>
109
+ """
110
+ )
111
+ gr.HTML(
112
+ """
113
+ <head>
114
+ <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0-beta3/css/all.min.css">
115
+
116
+ <style>
117
+ .button-container {
118
+ display: flex;
119
+ justify-content: center;
120
+ gap: 10px;
121
+ margin-top: 10px;
122
+ }
123
+
124
+ .button-container a {
125
+ display: inline-flex;
126
+ align-items: center;
127
+ padding: 10px 20px;
128
+ border-radius: 30px;
129
+ border: 1px solid #ccc;
130
+ text-decoration: none;
131
+ color: #333 !important;
132
+ font-size: 16px;
133
+ text-decoration: none !important;
134
+ }
135
+
136
+ .button-container a i {
137
+ margin-right: 8px;
138
+ }
139
+ </style>
140
+ </head>
141
+
142
+ <div class="button-container">
143
+ <a href="https://arxiv.org/abs/2407.08737" class="btn btn-outline-primary">
144
+ <i class="fa-solid fa-file-pdf"></i> Paper
145
+ </a>
146
+ <a href="https://vader-vid.github.io/" class="btn btn-outline-danger">
147
+ <i class="fa-solid fa-video"></i> Website
148
+ <a href="https://github.com/mihirp1998/VADER" class="btn btn-outline-secondary">
149
+ <i class="fa-brands fa-github"></i> Code
150
+ </a>
151
+ </div>
152
+ """
153
+ )
154
+
155
+ with gr.Row(elem_classes="centered"):
156
+ with gr.Column(scale=0.6):
157
+ output_video = gr.Video()
158
+
159
+ with gr.Row():
160
+ lora_model = gr.Dropdown(
161
+ label="VADER Model",
162
+ choices=["huggingface-pickscore", "huggingface-hps-aesthetic", "Base Model"],
163
+ value="huggingface-pickscore"
164
+ )
165
+ lora_rank = gr.Slider(minimum=0, maximum=16, label="LoRA Rank", step = 8, value=16)
166
+ load_btn = gr.Button("Load Model")
167
+ # Add a label to show the loading indicator
168
+ loading_indicator = gr.Label(value="", label="Loading Indicator")
169
+
170
+ prompt = gr.Textbox(placeholder="Enter prompt text here", lines=4, label="Text Prompt",
171
+ value="A mermaid with flowing hair and a shimmering tail discovers a hidden underwater kingdom adorned with coral palaces, glowing pearls, and schools of colorful fish, encountering both wonders and dangers along the way.")
172
+
173
+ seed = gr.Slider(minimum=0, maximum=65536, label="Seed", step = 1, value=200)
174
+
175
+ run_btn = gr.Button("Run Inference")
176
+
177
+
178
+ with gr.Row():
179
+ height = gr.Slider(minimum=0, maximum=1024, label="Height", step = 16, value=320)
180
+ width = gr.Slider(minimum=0, maximum=1024, label="Width", step = 16, value=512)
181
+
182
+ with gr.Row():
183
+ frames = gr.Slider(minimum=0, maximum=50, label="Frames", step = 1, value=24)
184
+ savefps = gr.Slider(minimum=0, maximum=60, label="Save FPS", step = 1, value=10)
185
+
186
+
187
+ with gr.Row():
188
+ DDIM_Steps = gr.Slider(minimum=0, maximum=100, label="DDIM Steps", step = 1, value=25)
189
+ unconditional_guidance_scale = gr.Slider(minimum=0, maximum=50, label="Guidance Scale", step = 0.1, value=12.0)
190
+ DDIM_Eta = gr.Slider(minimum=0, maximum=1, label="DDIM Eta", step = 0.01, value=1.0)
191
+
192
+ # reset button
193
+ reset_btn = gr.Button("Reset")
194
+
195
+ reset_btn.click(fn=reset_fn, outputs=[prompt, seed, height, width, unconditional_guidance_scale, DDIM_Steps, DDIM_Eta, frames, lora_rank, savefps, lora_model])
196
+
197
+
198
+
199
+ load_btn.click(fn=setup_model_progress, inputs=[lora_model, lora_rank], outputs=[load_btn, run_btn, reset_btn, loading_indicator])
200
+ run_btn.click(fn=gradio_main_fn,
201
+ inputs=[prompt, seed, height, width, unconditional_guidance_scale, DDIM_Steps, DDIM_Eta, frames, savefps],
202
+ outputs=output_video
203
+ )
204
+
205
+ lora_model.change(fn=update_lora_rank, inputs=lora_model, outputs=lora_rank)
206
+ lora_rank.change(fn=update_dropdown, inputs=lora_rank, outputs=lora_model)
207
+
208
+ demo.launch()
209
+
210
+ # main_fn(prompt="A mermaid with flowing hair and a shimmering tail discovers a hidden underwater kingdom adorned with coral palaces, glowing pearls, and schools of colorful fish, encountering both wonders and dangers along the way.",)
assets/activities.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ washing the dishes
2
+ riding a bike
3
+ playing chess
assets/chatgpt_custom.txt ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ A dog catching a red frisbee in mid-air with the sun setting behind, casting a golden glow.
2
+ A dog fetching a stick thrown into a crystal-clear lake surrounded by trees.
3
+ A dog running alongside a bicycle on a park trail lined with golden autumn leaves.
4
+ A dog leaping over a fence to catch a ball in a yard illuminated by string lights.
5
+ A dog performing agility course obstacles with precision in a park decorated with lanterns.
6
+ A dog running through a tunnel on an agility course with soft, colorful lighting.
7
+ A dog playing tug-of-war with a human in the backyard under a canopy of twinkling lights.
8
+ A dog retrieving a ball from the water in a pond surrounded by blooming lilies.
9
+ A dog weaving through poles on an agility course with soft lighting creating a magical atmosphere.
10
+ A dog running to catch a thrown toy in the air with vibrant flowers in the background.
11
+ A dog diving into a pool to retrieve a toy with sunlight sparkling on the water.
12
+ A dog catching a ball on the run during a game of fetch in a picturesque park.
13
+ A dog jumping through a hoop in an agility course with colorful flags.
14
+ A dog playing with a toy in a garden filled with blooming flowers.
15
+ A dog retrieving a frisbee from the air in a park under a bright blue sky.
16
+ A dog running at full speed across a field with a rainbow overhead.
17
+ A dog chasing a thrown stick in a field with golden sunlight.
18
+ A dog performing tricks in a park filled with children and laughter.
19
+ A dog chasing its tail in a backyard with colorful flowers.
20
+ A dog cuddling with a human under a tree with soft, ambient lighting.
21
+ A dog and cat playing together in a garden with soft morning light filtering through the trees.
22
+ A dog and cat chasing each other around the living room with fairy lights twinkling.
23
+ A dog and cat lounging together under a tree with soft, ambient lighting.
24
+ A dog and cat playing with a toy in a cozy, warmly lit room.
25
+ A dog and cat cuddling with a human on a couch with a fireplace glowing.
26
+ A cat jumping onto a high shelf to reach a dangling toy mouse, with soft light filtering through the window.
27
+ A cat chasing a laser pointer around the living room with fairy lights twinkling in the background.
28
+ A cat climbing up a curtain to reach a window ledge overlooking a moonlit garden.
29
+ A cat playing with a toy on a string hanging from a door, with soft ambient lighting creating a cozy atmosphere.
30
+ A cat pouncing on a moving object on the floor with gentle candlelight flickering nearby.
31
+ A cat batting at a moving object on a string, with a fireplace crackling in the background.
32
+ A cat chasing after a butterfly in the garden with soft morning light filtering through the trees.
33
+ A cat stalking a bird from behind a bush in the yard, with evening light casting long shadows.
34
+ A cat swiping at a moving toy on the floor with a cozy, warmly lit room.
35
+ A cat jumping from one surface to another on a bookshelf with soft lighting.
36
+ A cat chasing a toy car on the floor with sunlight streaming through the window.
37
+ A cat leaping to catch a feather toy hanging from a door with sunlight streaming in.
38
+ A cat playing with a ball in the living room with soft ambient lighting.
39
+ A cat batting at a dangling feather toy in a cozy, warmly lit room.
40
+ A cat chasing a string in a room filled with soft, ambient light.
41
+ A cat playing hide and seek with a toy in the living room with a warm glow.
42
+ A cat lounging in a sunbeam with a toy nearby.
43
+ A cat curling up in a cozy bed with soft ambient light around.
44
+ A cat playing with a small ball in a room with a warm, inviting atmosphere.
45
+ A cat and dog playing together in a garden with soft morning light filtering through the trees.
46
+ A cat and dog chasing each other around the living room with fairy lights twinkling.
47
+ A cat and dog lounging together under a tree with soft, ambient lighting.
48
+ A cat and dog playing with a toy in a cozy, warmly lit room.
49
+ A cat and dog cuddling with a human on a couch with a fireplace glowing.
50
+ A cat jumping onto a high shelf to reach a dangling toy mouse, with soft light filtering through the window.
assets/chatgpt_custom_actpred.txt ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ A young girl playing the piano in a cozy living room.
2
+ A boy playing guitar on a sunny beach.
3
+ A woman chopping wood in a forest.
4
+ A girl jogging along a scenic trail.
5
+ A boy playing the piano in a school auditorium.
6
+ A young woman playing guitar by a campfire.
7
+ A woman jogging in a park at sunrise.
8
+ A young girl chopping wood in a rustic backyard.
9
+ A boy jogging along a beach at sunset.
10
+ A man playing the piano in a modern living room.
11
+ A woman playing guitar at a local music festival.
12
+ A boy chopping wood in a snowy forest.
13
+ A young man jogging through a busy city street.
14
+ A woman playing the piano in an elegant ballroom.
15
+ A man playing guitar in a cozy café.
16
+ A boy jogging on a mountain trail.
17
+ A young girl playing the piano in a music classroom.
18
+ A man chopping wood in a rural countryside.
19
+ A woman jogging along a riverbank.
20
+ A boy playing guitar on a rooftop terrace.
21
+ A young man chopping wood in a quiet forest.
22
+ A woman playing the piano in a beautifully decorated hall.
23
+ A man jogging in a suburban neighborhood.
24
+ A girl playing guitar at a summer camp.
25
+ A young woman jogging on a scenic beach.
26
+ A man playing the piano at a fancy restaurant.
27
+ A woman chopping wood in her backyard.
28
+ A young girl jogging in a peaceful park.
29
+ A boy playing guitar in a busy city square.
30
+ A woman playing guitar in a cozy living room.
31
+ A girl jogging through a bustling market.
32
+ A boy playing the piano at a local talent show.
33
+ A young man chopping wood at a cabin retreat.
34
+ A young girl jogging in a colorful garden.
35
+ A man playing guitar at a rooftop party.
36
+ A woman playing the piano in a vintage-style parlor.
37
+ A boy chopping wood on a farm.
38
+ A young man jogging in an urban park.
39
+ A woman playing guitar in a chic coffee shop.
40
+ A man jogging along a cliffside trail.
41
+ A young girl playing the piano in a sunlit room.
assets/chatgpt_custom_actpred2.txt ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ A young girl playing the piano in a cozy living room.
2
+ A boy playing guitar on a sunny beach.
3
+ A man playing the violin in a bustling city square.
4
+ A woman chopping wood in a forest.
5
+ A girl jogging along a scenic trail.
6
+ A boy playing the piano in a school auditorium.
7
+ A young woman playing guitar by a campfire.
8
+ A man playing the violin in a grand concert hall.
9
+ A woman jogging in a park at sunrise.
10
+ A young girl chopping wood in a rustic backyard.
11
+ A boy jogging along a beach at sunset.
12
+ A man playing the piano in a modern living room.
13
+ A woman playing guitar at a local music festival.
14
+ A young girl playing the violin in a tranquil garden.
15
+ A boy chopping wood in a snowy forest.
16
+ A young man jogging through a busy city street.
17
+ A woman playing the piano in an elegant ballroom.
18
+ A man playing guitar in a cozy café.
19
+ A girl playing the violin in a historic church.
20
+ A boy jogging on a mountain trail.
21
+ A young girl playing the piano in a music classroom.
22
+ A man chopping wood in a rural countryside.
23
+ A woman jogging along a riverbank.
24
+ A boy playing guitar on a rooftop terrace.
25
+ A young girl playing the violin in a flower-filled meadow.
26
+ A young man chopping wood in a quiet forest.
27
+ A woman playing the piano in a beautifully decorated hall.
28
+ A man jogging in a suburban neighborhood.
29
+ A girl playing guitar at a summer camp.
30
+ A boy playing the violin in a quaint library.
31
+ A young woman jogging on a scenic beach.
32
+ A man playing the piano at a fancy restaurant.
33
+ A woman chopping wood in her backyard.
34
+ A young girl jogging in a peaceful park.
35
+ A boy playing guitar in a busy city square.
36
+ A man playing the violin in a modern art gallery.
37
+ A woman playing guitar in a cozy living room.
38
+ A girl jogging through a bustling market.
39
+ A boy playing the piano at a local talent show.
40
+ A young man chopping wood at a cabin retreat.
41
+ A woman playing the violin on a balcony overlooking a city.
42
+ A young girl jogging in a colorful garden.
43
+ A man playing guitar at a rooftop party.
44
+ A woman playing the piano in a vintage-style parlor.
45
+ A boy chopping wood on a farm.
46
+ A girl playing the violin in a serene forest.
47
+ A young man jogging in an urban park.
48
+ A woman playing guitar in a chic coffee shop.
49
+ A man jogging along a cliffside trail.
50
+ A young girl playing the piano in a sunlit room.
assets/chatgpt_custom_animal.txt ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ A happy dog running in a sunny park, with children playing in the background and birds flying above.
2
+ A cozy cat sleeping on a couch, surrounded by soft pillows and a warm blanket, with a gentle breeze coming through an open window.
3
+ A graceful bird flying across a clear blue sky, with fluffy white clouds and distant mountains in the background.
4
+ An excited dog fetching a bright red frisbee and bringing it back to its smiling owner in a green park.
5
+ A curious cat climbing a tall tree to chase a quick squirrel in a thick forest.
6
+ A big elephant spraying water with its trunk, making a rainbow in the bright sunlight at a calm waterhole.
7
+ A friendly dog playing with a curious cat in a colorful garden full of blooming flowers and buzzing bees.
8
+ A busy bird feeding its hungry chicks in a cozy nest on a tall tree, with the morning sun shining.
9
+ A strong lion and a graceful lioness resting together in the shade of a big tree on a wide grassland.
10
+ A playful penguin sliding down a snowy hill with its friends, the snow sparkling under a bright winter sun.
11
+ A clever monkey riding a small bicycle through a lively village, drawing the amazed looks of local children.
12
+ A tall giraffe bending down to drink water from a clear river, surrounded by green trees and colorful birds.
13
+ A majestic whale swimming in the deep blue ocean during a beautiful sunset, with the sky painted in orange and pink colors.
14
+ A peaceful deer eating grass in a thick forest, with sunlight filtering through the trees creating a magical feeling.
15
+ A determined turtle crawling on a sandy beach, with waves gently crashing in the background under a bright, clear sky.
16
+ A joyful dog playing in the snow, leaving paw prints and trying to catch snowflakes on its nose.
17
+ A cautious cat hiding from the rain under a tree, its fur slightly wet and raindrops making ripples in puddles.
18
+ A lively horse running through a field of blooming flowers in spring, the landscape full of colors and sweet smells.
19
+ A sad puppy looking sorry after being scolded, its ears down and eyes wet with tears in a quiet room.
20
+ An excited kitten playing with a ball of yarn, moving quickly and nimbly, in a cozy living room full of toys.
21
+ A curious elephant exploring its surroundings, its trunk gently touching things and eyes wide with wonder in a dense jungle.
22
+ A group of dolphins jumping out of the water, the sun setting behind them and casting a golden light on the waves.
23
+ A flock of birds flying during autumn, with colorful leaves swirling around them in the cool air.
24
+ A content panda eating bamboo in a peaceful forest, with a gentle waterfall flowing in the background.
assets/chatgpt_custom_animal_action.txt ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Cat riding a skateboard.
2
+ Dog riding a skateboard.
3
+ Rabbit riding a skateboard.
4
+ Raccoon riding a skateboard.
5
+ Monkey riding a skateboard.
6
+ Hedgehog riding a skateboard.
7
+ Bat riding a skateboard.
8
+ Mouse riding a skateboard.
9
+ Cat working on a laptop.
10
+ Dog working on a laptop.
11
+ Rabbit working on a laptop.
12
+ Raccoon working on a laptop.
13
+ Monkey working on a laptop.
14
+ Hedgehog working on a laptop.
15
+ Bat working on a laptop.
16
+ Mouse working on a laptop.
17
+ Cat reading a book.
18
+ Dog reading a book.
19
+ Rabbit reading a book.
20
+ Raccoon reading a book.
21
+ Monkey reading a book.
22
+ Hedgehog reading a book.
23
+ Bat reading a book.
24
+ Mouse reading a book.
25
+ Cat eating an apple.
26
+ Dog eating an apple.
27
+ Rabbit eating an apple.
28
+ Raccoon eating an apple.
29
+ Monkey eating an apple.
30
+ Hedgehog eating an apple.
31
+ Bat eating an apple.
32
+ Mouse eating an apple.
33
+ Cat eating watermelon.
34
+ Dog eating watermelon.
35
+ Rabbit eating watermelon.
36
+ Raccoon eating watermelon.
37
+ Monkey eating watermelon.
38
+ Hedgehog eating watermelon.
39
+ Bat eating watermelon.
40
+ Mouse eating watermelon.
assets/chatgpt_custom_animal_clothes.txt ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ A dog in a red shirt, running in a park.
2
+ A cat in a blue shirt, sitting on a windowsill.
3
+ A rabbit in a green shirt, pretending to cook.
4
+ A bear in a yellow shirt, splashing in puddles.
5
+ A penguin in a red scarf, waddling on ice.
6
+ A squirrel in a blue scarf, collecting acorns.
7
+ A monkey in a green scarf, juggling balls.
8
+ A lion in a yellow scarf, sitting on a rock.
9
+ A dolphin in a red hat, jumping out of the water.
10
+ A turtle in a blue hat, relaxing on a beach.
11
+ A dog in a firefighter hat, standing by a toy fire truck.
12
+ A cat in a ballet hat, practicing dance moves.
13
+ A rabbit in a magician's hat, pulling a carrot from a hat.
14
+ A bear in a cowboy hat, pretending to chop wood.
15
+ A penguin in a Santa hat, sliding on ice.
16
+ A squirrel in a knight's hat, holding a tiny sword.
17
+ A monkey in a detective hat, holding a magnifying glass.
18
+ A lion in a wizard's hat, looking at the stars.
19
+ A dolphin in a red shirt, hitting a ball with its nose.
20
+ A turtle in a blue shirt, holding a small wand.
21
+ A dog in a green shirt, skateboarding in a park.
22
+ A cat in a yellow shirt, sleeping on a bed.
23
+ A rabbit in a red shirt, picking flowers.
24
+ A bear in a blue shirt, fishing by a river.
25
+ A penguin in a green shirt, walking to an office.
26
+ A squirrel in a yellow shirt, collecting nuts.
27
+ A monkey in a red shirt, playing on a jungle gym.
28
+ A lion in a blue shirt, playing catch.
29
+ A dolphin in a green shirt, swimming near a boat.
30
+ A turtle in a yellow shirt, hiking on a trail.
31
+ A dog in a red hat, walking down an aisle.
32
+ A cat in a blue hat, sitting at a table.
33
+ A rabbit in a green hat, holding a diploma.
34
+ A bear in a yellow hat, trick-or-treating.
35
+ A penguin in a red scarf, decorating a Christmas tree.
36
+ A squirrel in a blue scarf, celebrating a birthday.
37
+ A monkey in a green scarf, holding confetti.
38
+ A lion in a yellow scarf, sitting by a cake.
39
+ A dolphin in a red hat, jumping in a pool.
40
+ A turtle in a blue hat, at a garden party.
41
+ A dog in a red jacket, playing in the snow.
42
+ A cat in a blue jacket, lounging under an umbrella.
43
+ A rabbit in a green jacket, hopping in a garden.
44
+ A bear in a yellow jacket, sitting by a campfire.
45
+ A penguin in a red jacket, skating on ice.
46
+ A squirrel in a blue jacket, enjoying a sunny day.
47
+ A monkey in a green jacket, swinging from trees.
48
+ A lion in a yellow jacket, building a sandcastle.
49
+ A dolphin in a red jacket, jumping through hoops.
50
+ A turtle in a blue jacket, celebrating a holiday.
assets/chatgpt_custom_animal_clothesV2.txt ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ The dog is wearing a red shirt and eating from a bowl.
2
+ The cat is wearing a blue shirt and playing with yarn.
3
+ The rabbit is wearing a green shirt and reading a book.
4
+ The bear is wearing a yellow shirt and painting a picture.
5
+ The raccoon is wearing a red dress and sliding down a tree.
6
+ The squirrel is wearing a blue dress and holding a nut.
7
+ The monkey is wearing a green dress and climbing a tree.
8
+ The lion is wearing a yellow dress and lying on a rock.
9
+ The fox is wearing a red hat and balancing a ball.
10
+ The panda is wearing a blue hat and looking at flowers.
11
+ The dog is wearing a firefighter hat and holding a hose.
12
+ The cat is wearing a ballet hat and standing on one foot.
13
+ The rabbit is wearing a magician's hat and holding a wand.
14
+ The bear is wearing a cowboy hat and tipping its hat.
15
+ The raccoon is wearing a Santa hat and carrying a gift.
16
+ The squirrel is wearing a knight's hat and holding a toy sword.
17
+ The monkey is wearing a detective hat and looking through a magnifying glass.
18
+ The lion is wearing a wizard's hat and holding a book.
19
+ The fox is wearing a red shirt and splashing water.
20
+ The panda is wearing a blue shirt and blowing bubbles.
21
+ The dog is wearing a green shirt and digging a hole.
22
+ The cat is wearing a yellow shirt and napping on a cushion.
23
+ The rabbit is wearing a red shirt and watering plants.
24
+ The bear is wearing a blue shirt and eating honey.
25
+ The raccoon is wearing a green shirt and building a small fort.
26
+ The squirrel is wearing a yellow shirt and sitting on a branch.
27
+ The monkey is wearing a red shirt and peeling a banana.
28
+ The lion is wearing a blue shirt and looking at the sky.
29
+ The fox is wearing a green shirt and sitting in a garden.
30
+ The panda is wearing a yellow shirt and walking in a forest
31
+ The dog is wearing a red hat and carrying a flower.
32
+ The cat is wearing a blue hat and sitting at a table.
33
+ The rabbit is wearing a green hat and holding a diploma.
34
+ The bear is wearing a yellow hat and holding a pumpkin.
35
+ The raccoon is wearing a red dress and hanging ornaments.
36
+ The squirrel is wearing a blue dress and eating cake.
37
+ The monkey is wearing a green dress and blowing a whistle.
38
+ The lion is wearing a yellow dress and standing next to a cake.
39
+ The fox is wearing a red hat and playing with leaves.
40
+ The panda is wearing a blue hat and holding a balloon.
41
+ The dog is wearing a red coat and sniffing the snow.
42
+ The cat is wearing a blue coat and sunbathing.
43
+ The rabbit is wearing a green coat and picking flowers.
44
+ The bear is wearing a yellow coat and roasting marshmallows.
45
+ The raccoon is wearing a red coat and holding a snowball.
46
+ The squirrel is wearing a blue coat and looking at leaves.
47
+ The monkey is wearing a green coat and eating fruit.
48
+ The lion is wearing a yellow coat and digging in the sand.
49
+ The fox is wearing a red coat and jumping in a pile of leaves.
50
+ The panda is wearing a blue coat and sitting by a fire.
assets/chatgpt_custom_animal_clothesV3.txt ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Cat in a red jacket
2
+ Cat in a blue jacket
3
+ Cat in a yellow jacket
4
+ Cat in a black jacket
5
+ Cat in a red shirt
6
+ Cat in a blue shirt
7
+ Cat in a yellow shirt
8
+ Cat in a black shirt
9
+ Cat in a red dress
10
+ Cat in a blue dress
11
+ Cat in a yellow dress
12
+ Cat in a black dress
13
+ Dog in a red jacket
14
+ Dog in a blue jacket
15
+ Dog in a yellow jacket
16
+ Dog in a black jacket
17
+ Dog in a red shirt
18
+ Dog in a blue shirt
19
+ Dog in a yellow shirt
20
+ Dog in a black shirt
21
+ Dog in a red dress
22
+ Dog in a blue dress
23
+ Dog in a yellow dress
24
+ Dog in a black dress
25
+ Rabbit in a red jacket
26
+ Rabbit in a blue jacket
27
+ Rabbit in a yellow jacket
28
+ Rabbit in a black jacket
29
+ Rabbit in a red shirt
30
+ Rabbit in a blue shirt
31
+ Rabbit in a yellow shirt
32
+ Rabbit in a black shirt
33
+ Rabbit in a red dress
34
+ Rabbit in a blue dress
35
+ Rabbit in a yellow dress
36
+ Rabbit in a black dress
37
+ Raccoon in a red jacket
38
+ Raccoon in a blue jacket
39
+ Raccoon in a yellow jacket
40
+ Raccoon in a black jacket
41
+ Raccoon in a red shirt
42
+ Raccoon in a blue shirt
43
+ Raccoon in a yellow shirt
44
+ Raccoon in a black shirt
45
+ Raccoon in a red dress
46
+ Raccoon in a blue dress
47
+ Raccoon in a yellow dress
48
+ Raccoon in a black dress
49
+ Monkey in a red jacket
50
+ Monkey in a blue jacket
51
+ Monkey in a yellow jacket
52
+ Monkey in a black jacket
53
+ Monkey in a red shirt
54
+ Monkey in a blue shirt
55
+ Monkey in a yellow shirt
56
+ Monkey in a black shirt
57
+ Monkey in a red dress
58
+ Monkey in a blue dress
59
+ Monkey in a yellow dress
60
+ Monkey in a black dress
61
+ Hedgehog in a red jacket
62
+ Hedgehog in a blue jacket
63
+ Hedgehog in a yellow jacket
64
+ Hedgehog in a black jacket
65
+ Hedgehog in a red shirt
66
+ Hedgehog in a blue shirt
67
+ Hedgehog in a yellow shirt
68
+ Hedgehog in a black shirt
69
+ Hedgehog in a red dress
70
+ Hedgehog in a blue dress
71
+ Hedgehog in a yellow dress
72
+ Hedgehog in a black dress
73
+ Mouse in a red jacket
74
+ Mouse in a blue jacket
75
+ Mouse in a yellow jacket
76
+ Mouse in a black jacket
77
+ Mouse in a red shirt
78
+ Mouse in a blue shirt
79
+ Mouse in a yellow shirt
80
+ Mouse in a black shirt
81
+ Mouse in a red dress
82
+ Mouse in a blue dress
83
+ Mouse in a yellow dress
84
+ Mouse in a black dress
85
+ Panda in a red jacket
86
+ Panda in a blue jacket
87
+ Panda in a yellow jacket
88
+ Panda in a black jacket
89
+ Panda in a red shirt
90
+ Panda in a blue shirt
91
+ Panda in a yellow shirt
92
+ Panda in a black shirt
93
+ Panda in a red dress
94
+ Panda in a blue dress
95
+ Panda in a yellow dress
96
+ Panda in a black dress
assets/chatgpt_custom_animal_housework.txt ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ The monkey is watering the plants.
2
+ The raccoon is vacuuming the carpet.
3
+ The cat is sweeping the floor.
4
+ The rabbit is wiping the windows.
5
+ The hedgehog is washing the car.
6
+ The dog is wiping the dining table.
7
+ The bat is dusting the shelves.
8
+ The monkey is watering the garden.
9
+ The raccoon is vacuuming the stairs.
10
+ The cat is sweeping the porch.
11
+ The rabbit is wiping the windowsills.
12
+ The hedgehog is washing the car windows.
13
+ The dog is wiping the kitchen table.
14
+ The bat is dusting the bookshelf.
15
+ The monkey is watering the indoor plants.
16
+ The raccoon is vacuuming the bedroom.
17
+ The cat is sweeping the garage.
18
+ The rabbit is wiping the patio doors.
19
+ The hedgehog is washing the car hood.
20
+ The dog is wiping the coffee table.
21
+ The bat is dusting the mantle.
22
+ The monkey is watering the hanging plants.
23
+ The raccoon is vacuuming the living room rug.
24
+ The cat is sweeping the basement.
25
+ The rabbit is wiping the bedroom windows.
26
+ The hedgehog is washing the car tires.
27
+ The dog is wiping the side table.
28
+ The bat is dusting the picture frames.
29
+ The monkey is watering the flower pots.
30
+ The raccoon is vacuuming the hallway.
31
+ The cat is sweeping the deck.
32
+ The rabbit is wiping the kitchen windows.
33
+ The hedgehog is washing the car bumper.
34
+ The dog is wiping the dining chairs.
35
+ The bat is dusting the TV stand.
36
+ The monkey is watering the balcony plants.
37
+ The raccoon is vacuuming the study.
38
+ The cat is sweeping the driveway.
39
+ The rabbit is wiping the glass doors.
40
+ The hedgehog is washing the car rear window.
41
+ The dog is wiping the dining table before dinner.
42
+ The bat is dusting the living room shelves.
43
+ The monkey is watering the backyard garden.
44
+ The raccoon is vacuuming the hallway carpet.
45
+ The cat is sweeping the patio.
46
+ The rabbit is wiping the sliding doors.
47
+ The hedgehog is washing the car front grille.
48
+ The dog is wiping the kitchen table after a meal.
49
+ The bat is dusting the study shelves.
50
+ The monkey is watering the windowsill plants.
51
+ The raccoon is vacuuming the nursery.
52
+ The cat is sweeping the front porch.
53
+ The rabbit is wiping the exterior windows.
54
+ The hedgehog is washing the car side mirrors.
55
+ The dog is wiping the dining table after dinner.
56
+ The bat is dusting the bedroom nightstands.
57
+ The monkey is watering the kitchen herb garden.
58
+ The raccoon is vacuuming the playroom.
59
+ The cat is sweeping the mudroom.
60
+ The rabbit is wiping the windows with a squeegee.
61
+ The hedgehog is washing the car headlights.
62
+ The dog is wiping the dining table after breakfast.
63
+ The bat is dusting the entertainment center.
64
+ The monkey is watering the sunroom plants.
65
+ The raccoon is vacuuming the family room.
66
+ The cat is sweeping the garden shed.
67
+ The rabbit is wiping the windows in the family room.
68
+ The hedgehog is washing the car roof.
69
+ The dog is wiping the living room table.
70
+ The bat is dusting the home office shelves.
71
+ The monkey is watering the front yard flowers.
72
+ The raccoon is vacuuming the home theater.
73
+ The cat is sweeping the steps.
74
+ The rabbit is wiping the kitchen windows with a sponge.
75
+ The hedgehog is washing the car front bumper.
76
+ The dog is wiping the dining table after lunch.
77
+ The bat is dusting the mantelpiece.
78
+ The monkey is watering the windowsill herbs.
79
+ The raccoon is vacuuming the dining room.
80
+ The cat is sweeping the entryway.
81
+ The rabbit is wiping the interior windows.
82
+ The hedgehog is washing the car fenders.
83
+ The dog is wiping the dining table before a meal.
84
+ The bat is dusting the entertainment center.
85
+ The monkey is watering the patio plants.
86
+ The raccoon is vacuuming the basement.
87
+ The cat is sweeping the sidewalk.
88
+ The rabbit is wiping the blinds.
89
+ The hedgehog is washing the car tires.
90
+ The dog is wiping the kitchen table before setting it.
91
+ The bat is dusting the bookshelf.
92
+ The monkey is watering the office plants.
93
+ The raccoon is vacuuming the guest room.
94
+ The cat is sweeping the garden shed.
95
+ The rabbit is wiping the playroom windows.
96
+ The hedgehog is washing the car roof.
97
+ The dog is wiping the dining table after breakfast.
98
+ The bat is dusting the picture frames.
99
+ The monkey is watering the porch plants.
100
+ The raccoon is vacuuming the family room carpet.
101
+ The cat is sweeping the garage.
102
+ The rabbit is wiping the sunroom windows.
103
+ The hedgehog is washing the car hood.
104
+ The dog is wiping the kitchen table after lunch.
105
+ The bat is dusting the nightstands.
106
+ The monkey is watering the balcony plants.
107
+ The raccoon is vacuuming the home theater carpet.
108
+ The cat is sweeping the front steps.
109
+ The rabbit is wiping the living room windows.
110
+ The hedgehog is washing the car side mirrors.
111
+ The dog is wiping the dining table before dinner.
112
+ The bat is dusting the study shelves.
113
+ The monkey is watering the backyard flowers.
114
+ The raccoon is vacuuming the bedroom carpet.
115
+ The cat is sweeping the patio.
116
+ The rabbit is wiping the glass doors.
117
+ The hedgehog is washing the car front grille.
118
+ The dog is wiping the dining table after a meal.
119
+ The bat is dusting the bookshelf.
120
+ The monkey is watering the hallway plants.
121
+ The raccoon is vacuuming the living room carpet.
122
+ The cat is sweeping the garage floor.
123
+ The rabbit is wiping the patio doors.
124
+ The hedgehog is washing the car bumper.
125
+ The dog is wiping the dining table before setting it.
126
+ The bat is dusting the family room shelves.
127
+ The monkey is watering the kitchen herbs.
128
+ The raccoon is vacuuming the playroom carpet.
129
+ The cat is sweeping the front porch.
130
+ The rabbit is wiping the windowsills.
131
+ The hedgehog is washing the car hood.
132
+ The dog is wiping the dining chairs.
133
+ The bat is dusting the TV stand.
134
+ The monkey is watering the garden.
135
+ The raccoon is vacuuming the stairs.
136
+ The cat is sweeping the basement.
137
+ The rabbit is wiping the kitchen windows.
138
+ The hedgehog is washing the car rear window.
139
+ The dog is wiping the dining table before dinner.
140
+ The bat is dusting the nightstands.
141
+ The monkey is watering the flower pots.
142
+ The raccoon is vacuuming the hallway.
143
+ The cat is sweeping the deck.
144
+ The rabbit is wiping the kitchen windows.
145
+ The hedgehog is washing the car tires.
146
+ The dog is wiping the dining chairs.
147
+ The bat is dusting the TV stand.
148
+ The monkey is watering the indoor plants.
149
+ The raccoon is vacuuming the bedroom carpet.
150
+ The cat is sweeping the floor.
assets/chatgpt_custom_animal_sport.txt ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ A dog playing soccer in a green field, wearing a red jersey and kicking a ball towards a goal.
2
+ A cat playing tennis on a sunny court, wearing a white visor and swinging a racket to hit the ball.
3
+ A kangaroo boxing in a ring, wearing blue boxing gloves and shorts, jumping and throwing punches.
4
+ A bear lifting weights in a gym, wearing a headband and wristbands, straining as it lifts a heavy barbell.
5
+ A penguin ice skating in an indoor rink, wearing a bright scarf and gracefully gliding on the ice.
6
+ A rabbit running in a track race, wearing running shoes and a number bib, sprinting towards the finish line.
7
+ A horse playing polo on a green field, wearing a helmet and riding gear, skillfully hitting the ball with a mallet.
8
+ A squirrel surfing on a big wave, wearing a wetsuit and balancing on a surfboard with skill.
9
+ A monkey climbing a rock wall, wearing climbing shoes and a harness, reaching for the next hold with determination.
10
+ An elephant playing basketball in a playground, wearing a jersey and shooting the ball into the hoop with its trunk.
11
+ A group of dogs playing football, all wearing team jerseys and helmets, running and tackling each other on the field.
12
+ A pair of cats playing beach volleyball, wearing sunglasses and swim trunks, jumping to spike the ball over the net.
13
+ A herd of elephants playing rugby, wearing matching uniforms and charging towards the goal line.
14
+ A flock of birds playing badminton in a park, wearing tiny sweatbands and fluttering to hit the shuttlecock.
15
+ A team of rabbits playing baseball, wearing caps and gloves, one rabbit pitching the ball while another gets ready to bat.
16
+ A fox skateboarding in a skate park, wearing a helmet and knee pads, performing tricks on the ramps.
17
+ A cheetah racing in a motocross event, wearing a racing suit and helmet, speeding over dirt hills and jumps.
18
+ A raccoon doing parkour in an urban environment, wearing a bandana and wristbands, skillfully jumping between buildings.
19
+ A dolphin windsurfing on the ocean, wearing a bright life vest and maneuvering the board with precision.
20
+ A tiger bungee jumping off a bridge, wearing a safety harness and roaring as it plunges towards the river below.
21
+ A polar bear swimming competitively in a pool, wearing goggles and a swim cap, racing towards the finish line.
22
+ A seal playing water polo, wearing a swim cap and maneuvering the ball with its flippers in a heated match.
23
+ A duck rowing a boat in a lake, wearing a life jacket and paddling vigorously with its team.
24
+ A turtle snorkeling in a coral reef, wearing a snorkel mask and fins, exploring the colorful underwater world.
25
+ A frog kayaking down a river, wearing a helmet and life vest, skillfully navigating through the rapids.
assets/chatgpt_custom_animal_sportV2.txt ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ A dog playing soccer in a green field, wearing a red jersey and kicking a ball towards a goal.
2
+ A cat playing tennis on a sunny court, wearing a white visor and swinging a racket to hit the ball.
3
+ A kangaroo boxing in a ring, wearing blue boxing gloves and shorts, jumping and throwing punches.
4
+ A bear lifting weights in a gym, wearing a headband and wristbands, straining as it lifts a heavy barbell.
5
+ A penguin ice skating in an indoor rink, wearing a bright scarf and gracefully gliding on the ice.
6
+ A rabbit running in a track race, wearing running shoes and a number bib, sprinting towards the finish line.
7
+ A sea otter surfing on a big wave, wearing a wetsuit and balancing on a surfboard with ease.
8
+ A monkey climbing a rock wall, wearing climbing shoes and a harness, reaching for the next hold with determination.
9
+ An elephant playing basketball in a playground, wearing a jersey and shooting the ball into the hoop with its trunk.
10
+ A kangaroo playing rugby, wearing a jersey and running with the ball towards the goal line.
11
+ A group of dogs playing football, all wearing team jerseys and helmets, running and tackling each other on the field.
12
+ A pair of cats playing beach volleyball, wearing sunglasses and swim trunks, jumping to spike the ball over the net.
13
+ A herd of elephants playing rugby, wearing matching uniforms and charging towards the goal line.
14
+ A team of rabbits playing baseball, wearing caps and gloves, one rabbit pitching the ball while another gets ready to bat.
15
+ A team of squirrels playing soccer, wearing colorful jerseys and skillfully passing the ball to each other.
16
+ A fox skateboarding in a skate park, wearing a helmet and knee pads, performing tricks on the ramps.
17
+ A cheetah racing in a motocross event, wearing a racing suit and helmet, speeding over dirt hills and jumps.
18
+ A raccoon doing parkour in an urban environment, wearing a bandana and wristbands, skillfully jumping between buildings.
19
+ A dolphin windsurfing on the ocean, wearing a bright life vest and maneuvering the board with precision.
20
+ A squirrel bungee jumping off a bridge, wearing a safety harness and looking excited as it bounces.
21
+ A polar bear swimming competitively in a pool, wearing goggles and a swim cap, racing towards the finish line.
22
+ A seal playing water polo, wearing a swim cap and maneuvering the ball with its flippers in a heated match.
23
+ A duck rowing a boat in a calm lake, wearing a life jacket and paddling vigorously with its webbed feet.
24
+ A turtle snorkeling in a coral reef, wearing a snorkel mask and fins, exploring the colorful underwater world.
25
+ A frog kayaking down a river, wearing a helmet and life vest, skillfully navigating through the rapids.
26
+ A dog sledding in a snowy landscape, wearing a harness and pulling a sled through the snow.
27
+ A rabbit skiing down a snowy hill, wearing a winter hat and goggles, expertly navigating the slopes.
28
+ A penguin sliding down an icy slope, wearing a scarf and having fun in the winter wonderland.
29
+ A polar bear playing ice hockey, wearing a jersey and skates, skillfully handling the puck with its stick.
30
+ A cat snowboarding on a mountain, wearing a colorful jacket and performing tricks on the snow.
31
+ A dog playing frisbee in a park, wearing a bandana and leaping high to catch the flying disc.
32
+ A cat performing gymnastics, wearing a leotard and balancing gracefully on a beam.
33
+ A rabbit participating in an agility course, wearing a harness and quickly navigating through the obstacles.
34
+ A bear doing archery in a field, wearing a quiver and aiming carefully at the target.
35
+ A kangaroo playing basketball, wearing a jersey and dribbling the ball before making a jump shot.
36
+ A group of dogs playing basketball, wearing team jerseys and passing the ball to each other.
37
+ A pair of cats playing doubles tennis, wearing matching visors and coordinating their shots.
38
+ A team of rabbits playing soccer, wearing colorful jerseys and skillfully dribbling the ball.
39
+ A pair of kangaroos playing doubles badminton, wearing wristbands and jumping to hit the shuttlecock.
40
+ A team of monkeys playing volleyball, wearing headbands and high-fiving each other after a point.
41
+ A cheetah running in a marathon, wearing running shoes and a number bib, speeding towards the finish line.
42
+ A raccoon skateboarding down a city street, wearing a helmet and knee pads, performing tricks on the pavement.
43
+ A dolphin doing synchronized swimming, wearing a swim cap and gracefully moving in sync with others.
44
+ A squirrel doing a high-wire act in a circus, wearing a tiny costume and balancing skillfully on the rope.
45
+ A monkey doing bungee jumping, wearing a safety harness and looking thrilled as it bounces up and down.
46
+ A sea lion surfing on the ocean waves, wearing a wetsuit and riding the surfboard with expertise.
47
+ A duck swimming in a lake race, wearing a small cap and paddling swiftly with its webbed feet.
48
+ A turtle diving in a pool, wearing goggles and fins, gracefully exploring the underwater environment.
49
+ A frog rowing a boat in a calm river, wearing a life jacket and paddling smoothly with its strong legs.
50
+ A seal doing synchronized swimming, wearing a swim cap and performing elegant moves in the water.
assets/chatgpt_custom_animal_technology.txt ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ The dog is using a computer, typing on the keyboard.
2
+ The cat is talking on a phone.
3
+ The rabbit is playing a video game with a controller.
4
+ The bear is watching TV.
5
+ The raccoon is taking a selfie with a phone.
6
+ The squirrel is wearing headphones and listening to music.
7
+ The monkey is using a tablet.
8
+ The lion is using a laptop.
9
+ The fox is changing TV channels with a remote control.
10
+ The panda is checking the time on a smartwatch.
11
+ The dog is browsing on a tablet.
12
+ The cat is taking a photo with a camera.
13
+ The rabbit is video calling a friend on a laptop.
14
+ The bear is listening to music on a speaker.
15
+ The raccoon is charging a phone.
16
+ The squirrel is reading an e-book on a tablet.
17
+ The monkey is typing on a laptop.
18
+ The lion is taking a video with a phone.
19
+ The fox is setting an alarm on a smartwatch.
20
+ The panda is playing a game on a tablet.
21
+ The dog is watching videos on a phone.
22
+ The cat is using a fitness tracker.
23
+ The rabbit is browsing the internet on a computer.
24
+ The bear is listening to a podcast on a phone.
25
+ The raccoon is texting on a phone.
26
+ The squirrel is watching a movie on a tablet.
27
+ The monkey is scrolling through social media on a phone.
28
+ The lion is video calling a friend on a laptop.
29
+ The fox is using a calculator on a phone.
30
+ The panda is playing a video game with a controller.
31
+ The dog is checking email on a computer.
32
+ The cat is listening to music with earbuds.
33
+ The rabbit is using a webcam for a video chat.
34
+ The bear is typing a document on a laptop.
35
+ The raccoon is taking a photo with a tablet.
36
+ The squirrel is using a microwave to heat food.
37
+ The monkey is reading a digital book on an e-reader.
38
+ The lion is taking a picture with a smartphone.
39
+ The fox is watching a show on a tablet.
40
+ The panda is checking the weather on a smartphone.
41
+ The dog is using a laptop to write a story.
42
+ The cat is using a smart light to change colors.
43
+ The rabbit is listening to an audiobook on a phone.
44
+ The bear is making a video call on a tablet.
45
+ The raccoon is setting a reminder on a smartwatch.
46
+ The squirrel is using a digital thermometer to check the temperature.
47
+ The monkey is editing a photo on a laptop.
48
+ The lion is playing music on a Bluetooth speaker.
49
+ The fox is setting a timer on a smartphone.
50
+ The panda is watching a tutorial on a computer.
assets/chatgpt_custom_banana.txt ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ A banana and a vase of flowers on a marble kitchen counter.
2
+ A banana and a cup of tea on a wooden desk.
3
+ A banana and a water bottle on a park bench.
4
+ A banana and a small pot of herbs on a windowsill.
5
+ A banana and a wicker basket on a picnic table.
6
+ A banana and a soft blanket on a bookshelf.
7
+ A banana and a lamp on a nightstand.
8
+ A banana and a latte on a café table.
9
+ A banana and sunglasses on a car dashboard.
10
+ A banana and fine china on a dining table.
11
+ A banana and a notebook on a classroom desk.
12
+ A banana and a water bottle on a gym bench.
13
+ A banana and seashells on a beach towel.
14
+ A banana and a potted plant on a windowsill.
15
+ A banana and candles on a fireplace mantel.
16
+ A banana and flowers in a bicycle basket.
17
+ A banana and old books on a library table.
18
+ A banana and a remote control on a couch armrest.
19
+ A banana and vegetables on a kitchen island.
20
+ A banana and a small vase of daisies on a restaurant table.
21
+ A banana and a book on a park table.
22
+ A banana and sheet music on a grand piano.
23
+ A banana and roses on a garden bench.
24
+ A banana and a water bottle on a yoga mat.
25
+ A banana and a cup of pens on a teacher’s desk.
26
+ A banana and a glass of water on a bedside table.
27
+ A banana and paintbrushes on a workbench.
28
+ A banana and a playbill on a theater seat.
29
+ A banana and a small bag of snacks on a park fountain edge.
30
+ A banana and a fishing rod on a boat deck.
31
+ A banana and other fruits on a street vendor’s cart.
32
+ A banana and a glass of wine on a rooftop terrace table.
33
+ A banana and a bag of popcorn on a stadium seat.
34
+ A banana and a coffee mug on a computer desk.
35
+ A banana and a book on a garden swing.
36
+ A banana and a magazine on a city bus seat.
37
+ A banana and a travel brochure on a hotel lobby table.
38
+ A banana and a stack of notebooks on a classroom bookshelf.
39
+ A banana and a cappuccino on a café counter.
40
+ A banana and a water bottle on a treadmill console.
41
+ A banana and a bowl of nuts on a restaurant bar counter.
42
+ A banana and a thermos of tea on a park path bench.
43
+ A banana and a magazine on a hospital waiting room chair.
44
+ A banana and a suitcase on a train station bench.
45
+ A banana and a basket of snacks on a beach picnic blanket.
46
+ A banana and a program on a concert hall seat.
47
+ A banana and a small vase of flowers on a kitchen window ledge.
48
+ A banana and a sketchbook on an artist’s worktable.
49
+ A banana and a water bottle on a hiking trail bench.
50
+ A banana and a cup of tea on a coffee table.
assets/chatgpt_custom_book_cup.txt ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ A book and a cup of coffee on a cozy armchair.
2
+ A book and a cup of tea on a windowsill with raindrops.
3
+ A book and a cup of hot chocolate on a wooden desk.
4
+ A book and a cup of herbal tea on a bedside table.
5
+ A book and a cup of coffee on a park bench under a tree.
6
+ A book and a cup of tea on a picnic blanket in a meadow.
7
+ A book and a cup of coffee on a café table by the window.
8
+ A book and a cup of tea on a porch swing.
9
+ A book and a cup of coffee on a kitchen counter with a fruit bowl.
10
+ A book and a cup of tea on a library table surrounded by shelves of books.
11
+ A book and a cup of hot chocolate on a coffee table by the fireplace.
12
+ A book and a cup of tea on a garden bench among blooming flowers.
13
+ A book and a cup of coffee on a balcony with a city view.
14
+ A book and a cup of tea on a nightstand with a lamp.
15
+ A book and a cup of herbal tea on a yoga mat in a serene room.
16
+ A book and a cup of coffee on a desk in a home office.
17
+ A book and a cup of tea on a park bench by a pond.
18
+ A book and a cup of coffee on a café patio with string lights.
19
+ A book and a cup of tea on a picnic table in the forest.
20
+ A book and a cup of hot chocolate on a windowsill with a snowy view.
21
+ A book and a cup of tea on a hammock in the garden.
22
+ A book and a cup of coffee on a rustic wooden table in a cabin.
23
+ A book and a cup of tea on a bench in a botanical garden.
24
+ A book and a cup of coffee on a study table with a globe.
25
+ A book and a cup of tea on a blanket in a sunflower field.
assets/chatgpt_custom_book_cup_character.txt ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ A woman reading a book and sipping a cup of coffee on a cozy armchair.
2
+ A man reading a book and drinking a cup of tea on a windowsill with raindrops.
3
+ A girl with a book and a cup of hot chocolate on a wooden desk.
4
+ A man reading a book and enjoying a cup of herbal tea on a bedside table.
5
+ A girl reading a book and holding a cup of coffee on a park bench under a tree.
6
+ A woman lying on a picnic blanket in a meadow with a book and a cup of tea.
7
+ A man reading a book and sipping a cup of coffee on a café table by the window.
8
+ A girl swinging on a porch swing with a book and a cup of tea.
9
+ A woman reading a book and enjoying a cup of coffee on a kitchen counter with a fruit bowl.
10
+ A man surrounded by books, reading with a cup of tea on a library table.
11
+ A child reading a book and drinking a cup of hot chocolate on a coffee table by the fireplace.
12
+ A woman sitting on a garden bench, reading a book and sipping a cup of tea among blooming flowers.
13
+ A man reading a book and enjoying a cup of coffee on a balcony with a city view.
14
+ A woman reading a book and drinking a cup of tea on a nightstand with a lamp.
15
+ A woman reading a book and sipping a cup of herbal tea on a yoga mat in a serene room.
16
+ A man reading a book and drinking a cup of coffee on a desk in a home office.
17
+ A man reading a book and enjoying a cup of tea on a park bench by a pond.
18
+ A couple reading books and sipping cups of coffee on a café patio with string lights.
19
+ A woman reading a book and drinking a cup of tea on a picnic table in the forest.
20
+ A child reading a book and drinking a cup of hot chocolate on a windowsill with a snowy view.
21
+ A woman lounging in a hammock with a book and a cup of tea in the garden.
22
+ A man reading a book and sipping a cup of coffee on a rustic wooden table in a cabin.
23
+ A woman reading a book and drinking a cup of tea on a bench in a botanical garden.
24
+ A child reading a book and enjoying a cup of coffee on a study table with a globe.
25
+ A girl lying on a blanket in a sunflower field with a book and a cup of tea.