Spaces:
Runtime error
Runtime error
from __future__ import annotations | |
import logging | |
from typing import ( | |
Any, | |
Callable, | |
Dict, | |
Iterator, | |
List, | |
Mapping, | |
Optional, | |
Tuple, | |
Type, | |
) | |
from langchain_core.messages import ( | |
AIMessage, | |
AIMessageChunk, | |
BaseMessage, | |
BaseMessageChunk, | |
ChatMessage, | |
ChatMessageChunk, | |
FunctionMessage, | |
FunctionMessageChunk, | |
HumanMessage, | |
HumanMessageChunk, | |
SystemMessage, | |
SystemMessageChunk, | |
) | |
from langchain_core.outputs import ( | |
ChatGeneration, | |
ChatGenerationChunk, | |
ChatResult, | |
GenerationChunk, | |
) | |
from langchain_core.pydantic_v1 import Field, root_validator | |
from requests.exceptions import HTTPError | |
from tenacity import ( | |
RetryCallState, | |
retry, | |
retry_if_exception_type, | |
stop_after_attempt, | |
wait_exponential, | |
) | |
from langchain.callbacks.manager import CallbackManagerForLLMRun | |
from langchain.chat_models.base import ( | |
BaseChatModel, | |
_generate_from_stream, | |
) | |
from langchain.utils import get_from_dict_or_env | |
logger = logging.getLogger(__name__) | |
def convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage: | |
role = _dict["role"] | |
if role == "user": | |
return HumanMessage(content=_dict["content"]) | |
elif role == "assistant": | |
content = _dict.get("content", "") or "" | |
if _dict.get("function_call"): | |
additional_kwargs = {"function_call": dict(_dict["function_call"])} | |
else: | |
additional_kwargs = {} | |
return AIMessage(content=content, additional_kwargs=additional_kwargs) | |
elif role == "system": | |
return SystemMessage(content=_dict["content"]) | |
elif role == "function": | |
return FunctionMessage(content=_dict["content"], name=_dict["name"]) | |
else: | |
return ChatMessage(content=_dict["content"], role=role) | |
def convert_message_to_dict(message: BaseMessage) -> dict: | |
message_dict: Dict[str, Any] | |
if isinstance(message, ChatMessage): | |
message_dict = {"role": message.role, "content": message.content} | |
elif isinstance(message, HumanMessage): | |
message_dict = {"role": "user", "content": message.content} | |
elif isinstance(message, AIMessage): | |
message_dict = {"role": "assistant", "content": message.content} | |
if "function_call" in message.additional_kwargs: | |
message_dict["function_call"] = message.additional_kwargs["function_call"] | |
# If function call only, content is None not empty string | |
if message_dict["content"] == "": | |
message_dict["content"] = None | |
elif isinstance(message, SystemMessage): | |
message_dict = {"role": "system", "content": message.content} | |
elif isinstance(message, FunctionMessage): | |
message_dict = { | |
"role": "function", | |
"content": message.content, | |
"name": message.name, | |
} | |
else: | |
raise TypeError(f"Got unknown type {message}") | |
if "name" in message.additional_kwargs: | |
message_dict["name"] = message.additional_kwargs["name"] | |
return message_dict | |
def _stream_response_to_generation_chunk( | |
stream_response: Dict[str, Any], | |
length: int, | |
) -> GenerationChunk: | |
"""Convert a stream response to a generation chunk. | |
As the low level API implement is different from openai and other llm. | |
Stream response of Tongyi is not split into chunks, but all data generated before. | |
For example, the answer 'Hi Pickle Rick! How can I assist you today?' | |
Other llm will stream answer: | |
'Hi Pickle', | |
' Rick!', | |
' How can I assist you today?'. | |
Tongyi answer: | |
'Hi Pickle', | |
'Hi Pickle Rick!', | |
'Hi Pickle Rick! How can I assist you today?'. | |
As the GenerationChunk is implemented with chunks. Only return full_text[length:] | |
for new chunk. | |
""" | |
full_text = stream_response["output"]["text"] | |
text = full_text[length:] | |
finish_reason = stream_response["output"].get("finish_reason", None) | |
return GenerationChunk( | |
text=text, | |
generation_info=dict( | |
finish_reason=finish_reason, | |
), | |
) | |
def _create_retry_decorator( | |
llm: ChatTongyi, | |
run_manager: Optional[CallbackManagerForLLMRun] = None, | |
) -> Callable[[Any], Any]: | |
def _before_sleep(retry_state: RetryCallState) -> None: | |
if run_manager: | |
run_manager.on_retry(retry_state) | |
return None | |
min_seconds = 1 | |
max_seconds = 4 | |
# Wait 2^x * 1 second between each retry starting with | |
# 4 seconds, then up to 10 seconds, then 10 seconds afterwards | |
return retry( | |
reraise=True, | |
stop=stop_after_attempt(llm.max_retries), | |
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds), | |
retry=(retry_if_exception_type(HTTPError)), | |
before_sleep=_before_sleep, | |
) | |
def _convert_delta_to_message_chunk( | |
_dict: Mapping[str, Any], | |
default_class: Type[BaseMessageChunk], | |
length: int, | |
) -> BaseMessageChunk: | |
role = _dict.get("role") | |
full_content = _dict.get("content") or "" | |
content = full_content[length:] | |
if _dict.get("function_call"): | |
additional_kwargs = {"function_call": dict(_dict["function_call"])} | |
else: | |
additional_kwargs = {} | |
if role == "user" or default_class == HumanMessageChunk: | |
return HumanMessageChunk(content=content) | |
elif role == "assistant" or default_class == AIMessageChunk: | |
return AIMessageChunk(content=content, additional_kwargs=additional_kwargs) | |
elif role == "system" or default_class == SystemMessageChunk: | |
return SystemMessageChunk(content=content) | |
elif role == "function" or default_class == FunctionMessageChunk: | |
return FunctionMessageChunk(content=content, name=_dict["name"]) | |
elif role or default_class == ChatMessageChunk: | |
return ChatMessageChunk(content=content, role=role) | |
else: | |
return default_class(content=content) | |
class ChatTongyi(BaseChatModel): | |
"""Alibaba Tongyi Qwen chat models API. | |
To use, you should have the ``dashscope`` python package installed, | |
and set env ``DASHSCOPE_API_KEY`` with your API key, or pass | |
it as a named parameter to the constructor. | |
Example: | |
.. code-block:: python | |
from langchain.chat_models import Tongyi | |
Tongyi_chat = ChatTongyi() | |
""" | |
def lc_secrets(self) -> Dict[str, str]: | |
return {"dashscope_api_key": "DASHSCOPE_API_KEY"} | |
def lc_serializable(self) -> bool: | |
return True | |
client: Any #: :meta private: | |
model_name: str = Field(default="qwen-turbo", alias="model") | |
"""Model name to use.""" | |
model_kwargs: Dict[str, Any] = Field(default_factory=dict) | |
top_p: float = 0.8 | |
"""Total probability mass of tokens to consider at each step.""" | |
dashscope_api_key: Optional[str] = None | |
"""Dashscope api key provide by alicloud.""" | |
n: int = 1 | |
"""How many completions to generate for each prompt.""" | |
streaming: bool = False | |
"""Whether to stream the results or not.""" | |
max_retries: int = 10 | |
"""Maximum number of retries to make when generating.""" | |
prefix_messages: List = Field(default_factory=list) | |
"""Series of messages for Chat input.""" | |
result_format: str = Field(default="message") | |
"""Return result format""" | |
def _llm_type(self) -> str: | |
"""Return type of llm.""" | |
return "tongyi" | |
def validate_environment(cls, values: Dict) -> Dict: | |
"""Validate that api key and python package exists in environment.""" | |
get_from_dict_or_env(values, "dashscope_api_key", "DASHSCOPE_API_KEY") | |
try: | |
import dashscope | |
except ImportError: | |
raise ImportError( | |
"Could not import dashscope python package. " | |
"Please install it with `pip install dashscope --upgrade`." | |
) | |
try: | |
values["client"] = dashscope.Generation | |
except AttributeError: | |
raise ValueError( | |
"`dashscope` has no `Generation` attribute, this is likely " | |
"due to an old version of the dashscope package. Try upgrading it " | |
"with `pip install --upgrade dashscope`." | |
) | |
return values | |
def _default_params(self) -> Dict[str, Any]: | |
"""Get the default parameters for calling OpenAI API.""" | |
return { | |
"model": self.model_name, | |
"top_p": self.top_p, | |
"stream": self.streaming, | |
"n": self.n, | |
"result_format": self.result_format, | |
**self.model_kwargs, | |
} | |
def completion_with_retry( | |
self, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any | |
) -> Any: | |
"""Use tenacity to retry the completion call.""" | |
retry_decorator = _create_retry_decorator(self, run_manager=run_manager) | |
def _completion_with_retry(**_kwargs: Any) -> Any: | |
resp = self.client.call(**_kwargs) | |
if resp.status_code == 200: | |
return resp | |
elif resp.status_code in [400, 401]: | |
raise ValueError( | |
f"status_code: {resp.status_code} \n " | |
f"code: {resp.code} \n message: {resp.message}" | |
) | |
else: | |
raise HTTPError( | |
f"HTTP error occurred: status_code: {resp.status_code} \n " | |
f"code: {resp.code} \n message: {resp.message}", | |
response=resp, | |
) | |
return _completion_with_retry(**kwargs) | |
def stream_completion_with_retry( | |
self, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any | |
) -> Any: | |
"""Use tenacity to retry the completion call.""" | |
retry_decorator = _create_retry_decorator(self, run_manager=run_manager) | |
def _stream_completion_with_retry(**_kwargs: Any) -> Any: | |
return self.client.call(**_kwargs) | |
return _stream_completion_with_retry(**kwargs) | |
def _generate( | |
self, | |
messages: List[BaseMessage], | |
stop: Optional[List[str]] = None, | |
run_manager: Optional[CallbackManagerForLLMRun] = None, | |
stream: Optional[bool] = None, | |
**kwargs: Any, | |
) -> ChatResult: | |
should_stream = stream if stream is not None else self.streaming | |
if should_stream: | |
stream_iter = self._stream( | |
messages, stop=stop, run_manager=run_manager, **kwargs | |
) | |
return _generate_from_stream(stream_iter) | |
if not messages: | |
raise ValueError("No messages provided.") | |
message_dicts, params = self._create_message_dicts(messages, stop) | |
if message_dicts[-1]["role"] != "user": | |
raise ValueError("Last message should be user message.") | |
params = {**params, **kwargs} | |
response = self.completion_with_retry( | |
messages=message_dicts, run_manager=run_manager, **params | |
) | |
return self._create_chat_result(response) | |
def _stream( | |
self, | |
messages: List[BaseMessage], | |
stop: Optional[List[str]] = None, | |
run_manager: Optional[CallbackManagerForLLMRun] = None, | |
**kwargs: Any, | |
) -> Iterator[ChatGenerationChunk]: | |
message_dicts, params = self._create_message_dicts(messages, stop) | |
params = {**params, **kwargs, "stream": True} | |
# Mark current chunk total length | |
length = 0 | |
default_chunk_class = AIMessageChunk | |
for chunk in self.stream_completion_with_retry( | |
messages=message_dicts, run_manager=run_manager, **params | |
): | |
if len(chunk["output"]["choices"]) == 0: | |
continue | |
choice = chunk["output"]["choices"][0] | |
chunk = _convert_delta_to_message_chunk( | |
choice["message"], default_chunk_class, length | |
) | |
finish_reason = choice.get("finish_reason") | |
generation_info = ( | |
dict(finish_reason=finish_reason) if finish_reason is not None else None | |
) | |
default_chunk_class = chunk.__class__ | |
chunk = ChatGenerationChunk(message=chunk, generation_info=generation_info) | |
yield chunk | |
if run_manager: | |
run_manager.on_llm_new_token(chunk.text, chunk=chunk) | |
length = len(choice["message"]["content"]) | |
def _create_message_dicts( | |
self, messages: List[BaseMessage], stop: Optional[List[str]] | |
) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]: | |
params = self._client_params() | |
# Ensure `stop` is a list of strings | |
if stop is not None: | |
if "stop" in params: | |
raise ValueError("`stop` found in both the input and default params.") | |
params["stop"] = stop | |
message_dicts = [convert_message_to_dict(m) for m in messages] | |
return message_dicts, params | |
def _client_params(self) -> Dict[str, Any]: | |
"""Get the parameters used for the openai client.""" | |
creds: Dict[str, Any] = { | |
"api_key": self.dashscope_api_key, | |
} | |
return {**self._default_params, **creds} | |
def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult: | |
generations = [] | |
for res in response["output"]["choices"]: | |
message = convert_dict_to_message(res["message"]) | |
gen = ChatGeneration( | |
message=message, | |
generation_info=dict(finish_reason=res.get("finish_reason")), | |
) | |
generations.append(gen) | |
token_usage = response.get("usage", {}) | |
llm_output = {"token_usage": token_usage, "model_name": self.model_name} | |
return ChatResult(generations=generations, llm_output=llm_output) | |