Spaces:
Runtime error
Runtime error
"""Chain that just formats a prompt and calls an LLM.""" | |
from __future__ import annotations | |
import warnings | |
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union, cast | |
from langchain_core.language_models import ( | |
BaseLanguageModel, | |
LanguageModelInput, | |
) | |
from langchain_core.load.dump import dumpd | |
from langchain_core.messages import BaseMessage | |
from langchain_core.output_parsers import BaseLLMOutputParser, StrOutputParser | |
from langchain_core.outputs import ChatGeneration, Generation, LLMResult | |
from langchain_core.prompt_values import PromptValue | |
from langchain_core.prompts import BasePromptTemplate, PromptTemplate | |
from langchain_core.pydantic_v1 import Extra, Field | |
from langchain_core.runnables import ( | |
Runnable, | |
RunnableBinding, | |
RunnableBranch, | |
RunnableWithFallbacks, | |
) | |
from langchain_core.runnables.configurable import DynamicRunnable | |
from langchain_core.utils.input import get_colored_text | |
from langchain.callbacks.manager import ( | |
AsyncCallbackManager, | |
AsyncCallbackManagerForChainRun, | |
CallbackManager, | |
CallbackManagerForChainRun, | |
Callbacks, | |
) | |
from langchain.chains.base import Chain | |
class LLMChain(Chain): | |
"""Chain to run queries against LLMs. | |
Example: | |
.. code-block:: python | |
from langchain.chains import LLMChain | |
from langchain.llms import OpenAI | |
from langchain_core.prompts import PromptTemplate | |
prompt_template = "Tell me a {adjective} joke" | |
prompt = PromptTemplate( | |
input_variables=["adjective"], template=prompt_template | |
) | |
llm = LLMChain(llm=OpenAI(), prompt=prompt) | |
""" | |
def is_lc_serializable(self) -> bool: | |
return True | |
prompt: BasePromptTemplate | |
"""Prompt object to use.""" | |
llm: Union[ | |
Runnable[LanguageModelInput, str], Runnable[LanguageModelInput, BaseMessage] | |
] | |
"""Language model to call.""" | |
output_key: str = "text" #: :meta private: | |
output_parser: BaseLLMOutputParser = Field(default_factory=StrOutputParser) | |
"""Output parser to use. | |
Defaults to one that takes the most likely string but does not change it | |
otherwise.""" | |
return_final_only: bool = True | |
"""Whether to return only the final parsed result. Defaults to True. | |
If false, will return a bunch of extra information about the generation.""" | |
llm_kwargs: dict = Field(default_factory=dict) | |
class Config: | |
"""Configuration for this pydantic object.""" | |
extra = Extra.forbid | |
arbitrary_types_allowed = True | |
def input_keys(self) -> List[str]: | |
"""Will be whatever keys the prompt expects. | |
:meta private: | |
""" | |
return self.prompt.input_variables | |
def output_keys(self) -> List[str]: | |
"""Will always return text key. | |
:meta private: | |
""" | |
if self.return_final_only: | |
return [self.output_key] | |
else: | |
return [self.output_key, "full_generation"] | |
def _call( | |
self, | |
inputs: Dict[str, Any], | |
run_manager: Optional[CallbackManagerForChainRun] = None, | |
) -> Dict[str, str]: | |
response = self.generate([inputs], run_manager=run_manager) | |
return self.create_outputs(response)[0] | |
def generate( | |
self, | |
input_list: List[Dict[str, Any]], | |
run_manager: Optional[CallbackManagerForChainRun] = None, | |
) -> LLMResult: | |
"""Generate LLM result from inputs.""" | |
prompts, stop = self.prep_prompts(input_list, run_manager=run_manager) | |
callbacks = run_manager.get_child() if run_manager else None | |
if isinstance(self.llm, BaseLanguageModel): | |
return self.llm.generate_prompt( | |
prompts, | |
stop, | |
callbacks=callbacks, | |
**self.llm_kwargs, | |
) | |
else: | |
results = self.llm.bind(stop=stop, **self.llm_kwargs).batch( | |
cast(List, prompts), {"callbacks": callbacks} | |
) | |
generations: List[List[Generation]] = [] | |
for res in results: | |
if isinstance(res, BaseMessage): | |
generations.append([ChatGeneration(message=res)]) | |
else: | |
generations.append([Generation(text=res)]) | |
return LLMResult(generations=generations) | |
async def agenerate( | |
self, | |
input_list: List[Dict[str, Any]], | |
run_manager: Optional[AsyncCallbackManagerForChainRun] = None, | |
) -> LLMResult: | |
"""Generate LLM result from inputs.""" | |
prompts, stop = await self.aprep_prompts(input_list, run_manager=run_manager) | |
callbacks = run_manager.get_child() if run_manager else None | |
if isinstance(self.llm, BaseLanguageModel): | |
return await self.llm.agenerate_prompt( | |
prompts, | |
stop, | |
callbacks=callbacks, | |
**self.llm_kwargs, | |
) | |
else: | |
results = await self.llm.bind(stop=stop, **self.llm_kwargs).abatch( | |
cast(List, prompts), {"callbacks": callbacks} | |
) | |
generations: List[List[Generation]] = [] | |
for res in results: | |
if isinstance(res, BaseMessage): | |
generations.append([ChatGeneration(message=res)]) | |
else: | |
generations.append([Generation(text=res)]) | |
return LLMResult(generations=generations) | |
def prep_prompts( | |
self, | |
input_list: List[Dict[str, Any]], | |
run_manager: Optional[CallbackManagerForChainRun] = None, | |
) -> Tuple[List[PromptValue], Optional[List[str]]]: | |
"""Prepare prompts from inputs.""" | |
stop = None | |
if len(input_list) == 0: | |
return [], stop | |
if "stop" in input_list[0]: | |
stop = input_list[0]["stop"] | |
prompts = [] | |
for inputs in input_list: | |
selected_inputs = {k: inputs[k] for k in self.prompt.input_variables} | |
prompt = self.prompt.format_prompt(**selected_inputs) | |
_colored_text = get_colored_text(prompt.to_string(), "green") | |
_text = "Prompt after formatting:\n" + _colored_text | |
if run_manager: | |
run_manager.on_text(_text, end="\n", verbose=self.verbose) | |
if "stop" in inputs and inputs["stop"] != stop: | |
raise ValueError( | |
"If `stop` is present in any inputs, should be present in all." | |
) | |
prompts.append(prompt) | |
return prompts, stop | |
async def aprep_prompts( | |
self, | |
input_list: List[Dict[str, Any]], | |
run_manager: Optional[AsyncCallbackManagerForChainRun] = None, | |
) -> Tuple[List[PromptValue], Optional[List[str]]]: | |
"""Prepare prompts from inputs.""" | |
stop = None | |
if len(input_list) == 0: | |
return [], stop | |
if "stop" in input_list[0]: | |
stop = input_list[0]["stop"] | |
prompts = [] | |
for inputs in input_list: | |
selected_inputs = {k: inputs[k] for k in self.prompt.input_variables} | |
prompt = self.prompt.format_prompt(**selected_inputs) | |
_colored_text = get_colored_text(prompt.to_string(), "green") | |
_text = "Prompt after formatting:\n" + _colored_text | |
if run_manager: | |
await run_manager.on_text(_text, end="\n", verbose=self.verbose) | |
if "stop" in inputs and inputs["stop"] != stop: | |
raise ValueError( | |
"If `stop` is present in any inputs, should be present in all." | |
) | |
prompts.append(prompt) | |
return prompts, stop | |
def apply( | |
self, input_list: List[Dict[str, Any]], callbacks: Callbacks = None | |
) -> List[Dict[str, str]]: | |
"""Utilize the LLM generate method for speed gains.""" | |
callback_manager = CallbackManager.configure( | |
callbacks, self.callbacks, self.verbose | |
) | |
run_manager = callback_manager.on_chain_start( | |
dumpd(self), | |
{"input_list": input_list}, | |
) | |
try: | |
response = self.generate(input_list, run_manager=run_manager) | |
except BaseException as e: | |
run_manager.on_chain_error(e) | |
raise e | |
outputs = self.create_outputs(response) | |
run_manager.on_chain_end({"outputs": outputs}) | |
return outputs | |
async def aapply( | |
self, input_list: List[Dict[str, Any]], callbacks: Callbacks = None | |
) -> List[Dict[str, str]]: | |
"""Utilize the LLM generate method for speed gains.""" | |
callback_manager = AsyncCallbackManager.configure( | |
callbacks, self.callbacks, self.verbose | |
) | |
run_manager = await callback_manager.on_chain_start( | |
dumpd(self), | |
{"input_list": input_list}, | |
) | |
try: | |
response = await self.agenerate(input_list, run_manager=run_manager) | |
except BaseException as e: | |
await run_manager.on_chain_error(e) | |
raise e | |
outputs = self.create_outputs(response) | |
await run_manager.on_chain_end({"outputs": outputs}) | |
return outputs | |
def _run_output_key(self) -> str: | |
return self.output_key | |
def create_outputs(self, llm_result: LLMResult) -> List[Dict[str, Any]]: | |
"""Create outputs from response.""" | |
result = [ | |
# Get the text of the top generated string. | |
{ | |
self.output_key: self.output_parser.parse_result(generation), | |
"full_generation": generation, | |
} | |
for generation in llm_result.generations | |
] | |
if self.return_final_only: | |
result = [{self.output_key: r[self.output_key]} for r in result] | |
return result | |
async def _acall( | |
self, | |
inputs: Dict[str, Any], | |
run_manager: Optional[AsyncCallbackManagerForChainRun] = None, | |
) -> Dict[str, str]: | |
response = await self.agenerate([inputs], run_manager=run_manager) | |
return self.create_outputs(response)[0] | |
def predict(self, callbacks: Callbacks = None, **kwargs: Any) -> str: | |
"""Format prompt with kwargs and pass to LLM. | |
Args: | |
callbacks: Callbacks to pass to LLMChain | |
**kwargs: Keys to pass to prompt template. | |
Returns: | |
Completion from LLM. | |
Example: | |
.. code-block:: python | |
completion = llm.predict(adjective="funny") | |
""" | |
return self(kwargs, callbacks=callbacks)[self.output_key] | |
async def apredict(self, callbacks: Callbacks = None, **kwargs: Any) -> str: | |
"""Format prompt with kwargs and pass to LLM. | |
Args: | |
callbacks: Callbacks to pass to LLMChain | |
**kwargs: Keys to pass to prompt template. | |
Returns: | |
Completion from LLM. | |
Example: | |
.. code-block:: python | |
completion = llm.predict(adjective="funny") | |
""" | |
return (await self.acall(kwargs, callbacks=callbacks))[self.output_key] | |
def predict_and_parse( | |
self, callbacks: Callbacks = None, **kwargs: Any | |
) -> Union[str, List[str], Dict[str, Any]]: | |
"""Call predict and then parse the results.""" | |
warnings.warn( | |
"The predict_and_parse method is deprecated, " | |
"instead pass an output parser directly to LLMChain." | |
) | |
result = self.predict(callbacks=callbacks, **kwargs) | |
if self.prompt.output_parser is not None: | |
return self.prompt.output_parser.parse(result) | |
else: | |
return result | |
async def apredict_and_parse( | |
self, callbacks: Callbacks = None, **kwargs: Any | |
) -> Union[str, List[str], Dict[str, str]]: | |
"""Call apredict and then parse the results.""" | |
warnings.warn( | |
"The apredict_and_parse method is deprecated, " | |
"instead pass an output parser directly to LLMChain." | |
) | |
result = await self.apredict(callbacks=callbacks, **kwargs) | |
if self.prompt.output_parser is not None: | |
return self.prompt.output_parser.parse(result) | |
else: | |
return result | |
def apply_and_parse( | |
self, input_list: List[Dict[str, Any]], callbacks: Callbacks = None | |
) -> Sequence[Union[str, List[str], Dict[str, str]]]: | |
"""Call apply and then parse the results.""" | |
warnings.warn( | |
"The apply_and_parse method is deprecated, " | |
"instead pass an output parser directly to LLMChain." | |
) | |
result = self.apply(input_list, callbacks=callbacks) | |
return self._parse_generation(result) | |
def _parse_generation( | |
self, generation: List[Dict[str, str]] | |
) -> Sequence[Union[str, List[str], Dict[str, str]]]: | |
if self.prompt.output_parser is not None: | |
return [ | |
self.prompt.output_parser.parse(res[self.output_key]) | |
for res in generation | |
] | |
else: | |
return generation | |
async def aapply_and_parse( | |
self, input_list: List[Dict[str, Any]], callbacks: Callbacks = None | |
) -> Sequence[Union[str, List[str], Dict[str, str]]]: | |
"""Call apply and then parse the results.""" | |
warnings.warn( | |
"The aapply_and_parse method is deprecated, " | |
"instead pass an output parser directly to LLMChain." | |
) | |
result = await self.aapply(input_list, callbacks=callbacks) | |
return self._parse_generation(result) | |
def _chain_type(self) -> str: | |
return "llm_chain" | |
def from_string(cls, llm: BaseLanguageModel, template: str) -> LLMChain: | |
"""Create LLMChain from LLM and template.""" | |
prompt_template = PromptTemplate.from_template(template) | |
return cls(llm=llm, prompt=prompt_template) | |
def _get_num_tokens(self, text: str) -> int: | |
return _get_language_model(self.llm).get_num_tokens(text) | |
def _get_language_model(llm_like: Runnable) -> BaseLanguageModel: | |
if isinstance(llm_like, BaseLanguageModel): | |
return llm_like | |
elif isinstance(llm_like, RunnableBinding): | |
return _get_language_model(llm_like.bound) | |
elif isinstance(llm_like, RunnableWithFallbacks): | |
return _get_language_model(llm_like.runnable) | |
elif isinstance(llm_like, (RunnableBranch, DynamicRunnable)): | |
return _get_language_model(llm_like.default) | |
else: | |
raise ValueError( | |
f"Unable to extract BaseLanguageModel from llm_like object of type " | |
f"{type(llm_like)}" | |
) | |