Spaces:
Runtime error
Runtime error
import os | |
import random | |
import string | |
import tempfile | |
import traceback | |
from copy import deepcopy | |
from pathlib import Path | |
from typing import Any, Dict, List, Optional, Union | |
from langchain_core.agents import AgentAction, AgentFinish | |
from langchain_core.outputs import LLMResult | |
from langchain.callbacks.base import BaseCallbackHandler | |
from langchain.callbacks.utils import ( | |
BaseMetadataCallbackHandler, | |
flatten_dict, | |
hash_string, | |
import_pandas, | |
import_spacy, | |
import_textstat, | |
) | |
from langchain.utils import get_from_dict_or_env | |
def import_mlflow() -> Any: | |
"""Import the mlflow python package and raise an error if it is not installed.""" | |
try: | |
import mlflow | |
except ImportError: | |
raise ImportError( | |
"To use the mlflow callback manager you need to have the `mlflow` python " | |
"package installed. Please install it with `pip install mlflow>=2.3.0`" | |
) | |
return mlflow | |
def analyze_text( | |
text: str, | |
nlp: Any = None, | |
) -> dict: | |
"""Analyze text using textstat and spacy. | |
Parameters: | |
text (str): The text to analyze. | |
nlp (spacy.lang): The spacy language model to use for visualization. | |
Returns: | |
(dict): A dictionary containing the complexity metrics and visualization | |
files serialized to HTML string. | |
""" | |
resp: Dict[str, Any] = {} | |
textstat = import_textstat() | |
spacy = import_spacy() | |
text_complexity_metrics = { | |
"flesch_reading_ease": textstat.flesch_reading_ease(text), | |
"flesch_kincaid_grade": textstat.flesch_kincaid_grade(text), | |
"smog_index": textstat.smog_index(text), | |
"coleman_liau_index": textstat.coleman_liau_index(text), | |
"automated_readability_index": textstat.automated_readability_index(text), | |
"dale_chall_readability_score": textstat.dale_chall_readability_score(text), | |
"difficult_words": textstat.difficult_words(text), | |
"linsear_write_formula": textstat.linsear_write_formula(text), | |
"gunning_fog": textstat.gunning_fog(text), | |
# "text_standard": textstat.text_standard(text), | |
"fernandez_huerta": textstat.fernandez_huerta(text), | |
"szigriszt_pazos": textstat.szigriszt_pazos(text), | |
"gutierrez_polini": textstat.gutierrez_polini(text), | |
"crawford": textstat.crawford(text), | |
"gulpease_index": textstat.gulpease_index(text), | |
"osman": textstat.osman(text), | |
} | |
resp.update({"text_complexity_metrics": text_complexity_metrics}) | |
resp.update(text_complexity_metrics) | |
if nlp is not None: | |
doc = nlp(text) | |
dep_out = spacy.displacy.render( # type: ignore | |
doc, style="dep", jupyter=False, page=True | |
) | |
ent_out = spacy.displacy.render( # type: ignore | |
doc, style="ent", jupyter=False, page=True | |
) | |
text_visualizations = { | |
"dependency_tree": dep_out, | |
"entities": ent_out, | |
} | |
resp.update(text_visualizations) | |
return resp | |
def construct_html_from_prompt_and_generation(prompt: str, generation: str) -> Any: | |
"""Construct an html element from a prompt and a generation. | |
Parameters: | |
prompt (str): The prompt. | |
generation (str): The generation. | |
Returns: | |
(str): The html string.""" | |
formatted_prompt = prompt.replace("\n", "<br>") | |
formatted_generation = generation.replace("\n", "<br>") | |
return f""" | |
<p style="color:black;">{formatted_prompt}:</p> | |
<blockquote> | |
<p style="color:green;"> | |
{formatted_generation} | |
</p> | |
</blockquote> | |
""" | |
class MlflowLogger: | |
"""Callback Handler that logs metrics and artifacts to mlflow server. | |
Parameters: | |
name (str): Name of the run. | |
experiment (str): Name of the experiment. | |
tags (dict): Tags to be attached for the run. | |
tracking_uri (str): MLflow tracking server uri. | |
This handler implements the helper functions to initialize, | |
log metrics and artifacts to the mlflow server. | |
""" | |
def __init__(self, **kwargs: Any): | |
self.mlflow = import_mlflow() | |
if "DATABRICKS_RUNTIME_VERSION" in os.environ: | |
self.mlflow.set_tracking_uri("databricks") | |
self.mlf_expid = self.mlflow.tracking.fluent._get_experiment_id() | |
self.mlf_exp = self.mlflow.get_experiment(self.mlf_expid) | |
else: | |
tracking_uri = get_from_dict_or_env( | |
kwargs, "tracking_uri", "MLFLOW_TRACKING_URI", "" | |
) | |
self.mlflow.set_tracking_uri(tracking_uri) | |
# User can set other env variables described here | |
# > https://www.mlflow.org/docs/latest/tracking.html#logging-to-a-tracking-server | |
experiment_name = get_from_dict_or_env( | |
kwargs, "experiment_name", "MLFLOW_EXPERIMENT_NAME" | |
) | |
self.mlf_exp = self.mlflow.get_experiment_by_name(experiment_name) | |
if self.mlf_exp is not None: | |
self.mlf_expid = self.mlf_exp.experiment_id | |
else: | |
self.mlf_expid = self.mlflow.create_experiment(experiment_name) | |
self.start_run(kwargs["run_name"], kwargs["run_tags"]) | |
def start_run(self, name: str, tags: Dict[str, str]) -> None: | |
"""To start a new run, auto generates the random suffix for name""" | |
if name.endswith("-%"): | |
rname = "".join(random.choices(string.ascii_uppercase + string.digits, k=7)) | |
name = name.replace("%", rname) | |
self.run = self.mlflow.MlflowClient().create_run( | |
self.mlf_expid, run_name=name, tags=tags | |
) | |
def finish_run(self) -> None: | |
"""To finish the run.""" | |
with self.mlflow.start_run( | |
run_id=self.run.info.run_id, experiment_id=self.mlf_expid | |
): | |
self.mlflow.end_run() | |
def metric(self, key: str, value: float) -> None: | |
"""To log metric to mlflow server.""" | |
with self.mlflow.start_run( | |
run_id=self.run.info.run_id, experiment_id=self.mlf_expid | |
): | |
self.mlflow.log_metric(key, value) | |
def metrics( | |
self, data: Union[Dict[str, float], Dict[str, int]], step: Optional[int] = 0 | |
) -> None: | |
"""To log all metrics in the input dict.""" | |
with self.mlflow.start_run( | |
run_id=self.run.info.run_id, experiment_id=self.mlf_expid | |
): | |
self.mlflow.log_metrics(data) | |
def jsonf(self, data: Dict[str, Any], filename: str) -> None: | |
"""To log the input data as json file artifact.""" | |
with self.mlflow.start_run( | |
run_id=self.run.info.run_id, experiment_id=self.mlf_expid | |
): | |
self.mlflow.log_dict(data, f"{filename}.json") | |
def table(self, name: str, dataframe) -> None: # type: ignore | |
"""To log the input pandas dataframe as a html table""" | |
self.html(dataframe.to_html(), f"table_{name}") | |
def html(self, html: str, filename: str) -> None: | |
"""To log the input html string as html file artifact.""" | |
with self.mlflow.start_run( | |
run_id=self.run.info.run_id, experiment_id=self.mlf_expid | |
): | |
self.mlflow.log_text(html, f"{filename}.html") | |
def text(self, text: str, filename: str) -> None: | |
"""To log the input text as text file artifact.""" | |
with self.mlflow.start_run( | |
run_id=self.run.info.run_id, experiment_id=self.mlf_expid | |
): | |
self.mlflow.log_text(text, f"{filename}.txt") | |
def artifact(self, path: str) -> None: | |
"""To upload the file from given path as artifact.""" | |
with self.mlflow.start_run( | |
run_id=self.run.info.run_id, experiment_id=self.mlf_expid | |
): | |
self.mlflow.log_artifact(path) | |
def langchain_artifact(self, chain: Any) -> None: | |
with self.mlflow.start_run( | |
run_id=self.run.info.run_id, experiment_id=self.mlf_expid | |
): | |
self.mlflow.langchain.log_model(chain, "langchain-model") | |
class MlflowCallbackHandler(BaseMetadataCallbackHandler, BaseCallbackHandler): | |
"""Callback Handler that logs metrics and artifacts to mlflow server. | |
Parameters: | |
name (str): Name of the run. | |
experiment (str): Name of the experiment. | |
tags (dict): Tags to be attached for the run. | |
tracking_uri (str): MLflow tracking server uri. | |
This handler will utilize the associated callback method called and formats | |
the input of each callback function with metadata regarding the state of LLM run, | |
and adds the response to the list of records for both the {method}_records and | |
action. It then logs the response to mlflow server. | |
""" | |
def __init__( | |
self, | |
name: Optional[str] = "langchainrun-%", | |
experiment: Optional[str] = "langchain", | |
tags: Optional[Dict] = None, | |
tracking_uri: Optional[str] = None, | |
) -> None: | |
"""Initialize callback handler.""" | |
import_pandas() | |
import_textstat() | |
import_mlflow() | |
spacy = import_spacy() | |
super().__init__() | |
self.name = name | |
self.experiment = experiment | |
self.tags = tags or {} | |
self.tracking_uri = tracking_uri | |
self.temp_dir = tempfile.TemporaryDirectory() | |
self.mlflg = MlflowLogger( | |
tracking_uri=self.tracking_uri, | |
experiment_name=self.experiment, | |
run_name=self.name, | |
run_tags=self.tags, | |
) | |
self.action_records: list = [] | |
self.nlp = spacy.load("en_core_web_sm") | |
self.metrics = { | |
"step": 0, | |
"starts": 0, | |
"ends": 0, | |
"errors": 0, | |
"text_ctr": 0, | |
"chain_starts": 0, | |
"chain_ends": 0, | |
"llm_starts": 0, | |
"llm_ends": 0, | |
"llm_streams": 0, | |
"tool_starts": 0, | |
"tool_ends": 0, | |
"agent_ends": 0, | |
} | |
self.records: Dict[str, Any] = { | |
"on_llm_start_records": [], | |
"on_llm_token_records": [], | |
"on_llm_end_records": [], | |
"on_chain_start_records": [], | |
"on_chain_end_records": [], | |
"on_tool_start_records": [], | |
"on_tool_end_records": [], | |
"on_text_records": [], | |
"on_agent_finish_records": [], | |
"on_agent_action_records": [], | |
"action_records": [], | |
} | |
def _reset(self) -> None: | |
for k, v in self.metrics.items(): | |
self.metrics[k] = 0 | |
for k, v in self.records.items(): | |
self.records[k] = [] | |
def on_llm_start( | |
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any | |
) -> None: | |
"""Run when LLM starts.""" | |
self.metrics["step"] += 1 | |
self.metrics["llm_starts"] += 1 | |
self.metrics["starts"] += 1 | |
llm_starts = self.metrics["llm_starts"] | |
resp: Dict[str, Any] = {} | |
resp.update({"action": "on_llm_start"}) | |
resp.update(flatten_dict(serialized)) | |
resp.update(self.metrics) | |
self.mlflg.metrics(self.metrics, step=self.metrics["step"]) | |
for idx, prompt in enumerate(prompts): | |
prompt_resp = deepcopy(resp) | |
prompt_resp["prompt"] = prompt | |
self.records["on_llm_start_records"].append(prompt_resp) | |
self.records["action_records"].append(prompt_resp) | |
self.mlflg.jsonf(prompt_resp, f"llm_start_{llm_starts}_prompt_{idx}") | |
def on_llm_new_token(self, token: str, **kwargs: Any) -> None: | |
"""Run when LLM generates a new token.""" | |
self.metrics["step"] += 1 | |
self.metrics["llm_streams"] += 1 | |
llm_streams = self.metrics["llm_streams"] | |
resp: Dict[str, Any] = {} | |
resp.update({"action": "on_llm_new_token", "token": token}) | |
resp.update(self.metrics) | |
self.mlflg.metrics(self.metrics, step=self.metrics["step"]) | |
self.records["on_llm_token_records"].append(resp) | |
self.records["action_records"].append(resp) | |
self.mlflg.jsonf(resp, f"llm_new_tokens_{llm_streams}") | |
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None: | |
"""Run when LLM ends running.""" | |
self.metrics["step"] += 1 | |
self.metrics["llm_ends"] += 1 | |
self.metrics["ends"] += 1 | |
llm_ends = self.metrics["llm_ends"] | |
resp: Dict[str, Any] = {} | |
resp.update({"action": "on_llm_end"}) | |
resp.update(flatten_dict(response.llm_output or {})) | |
resp.update(self.metrics) | |
self.mlflg.metrics(self.metrics, step=self.metrics["step"]) | |
for generations in response.generations: | |
for idx, generation in enumerate(generations): | |
generation_resp = deepcopy(resp) | |
generation_resp.update(flatten_dict(generation.dict())) | |
generation_resp.update( | |
analyze_text( | |
generation.text, | |
nlp=self.nlp, | |
) | |
) | |
complexity_metrics: Dict[str, float] = generation_resp.pop( | |
"text_complexity_metrics" | |
) # type: ignore # noqa: E501 | |
self.mlflg.metrics( | |
complexity_metrics, | |
step=self.metrics["step"], | |
) | |
self.records["on_llm_end_records"].append(generation_resp) | |
self.records["action_records"].append(generation_resp) | |
self.mlflg.jsonf(resp, f"llm_end_{llm_ends}_generation_{idx}") | |
dependency_tree = generation_resp["dependency_tree"] | |
entities = generation_resp["entities"] | |
self.mlflg.html(dependency_tree, "dep-" + hash_string(generation.text)) | |
self.mlflg.html(entities, "ent-" + hash_string(generation.text)) | |
def on_llm_error(self, error: BaseException, **kwargs: Any) -> None: | |
"""Run when LLM errors.""" | |
self.metrics["step"] += 1 | |
self.metrics["errors"] += 1 | |
def on_chain_start( | |
self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any | |
) -> None: | |
"""Run when chain starts running.""" | |
self.metrics["step"] += 1 | |
self.metrics["chain_starts"] += 1 | |
self.metrics["starts"] += 1 | |
chain_starts = self.metrics["chain_starts"] | |
resp: Dict[str, Any] = {} | |
resp.update({"action": "on_chain_start"}) | |
resp.update(flatten_dict(serialized)) | |
resp.update(self.metrics) | |
self.mlflg.metrics(self.metrics, step=self.metrics["step"]) | |
chain_input = ",".join([f"{k}={v}" for k, v in inputs.items()]) | |
input_resp = deepcopy(resp) | |
input_resp["inputs"] = chain_input | |
self.records["on_chain_start_records"].append(input_resp) | |
self.records["action_records"].append(input_resp) | |
self.mlflg.jsonf(input_resp, f"chain_start_{chain_starts}") | |
def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None: | |
"""Run when chain ends running.""" | |
self.metrics["step"] += 1 | |
self.metrics["chain_ends"] += 1 | |
self.metrics["ends"] += 1 | |
chain_ends = self.metrics["chain_ends"] | |
resp: Dict[str, Any] = {} | |
chain_output = ",".join([f"{k}={v}" for k, v in outputs.items()]) | |
resp.update({"action": "on_chain_end", "outputs": chain_output}) | |
resp.update(self.metrics) | |
self.mlflg.metrics(self.metrics, step=self.metrics["step"]) | |
self.records["on_chain_end_records"].append(resp) | |
self.records["action_records"].append(resp) | |
self.mlflg.jsonf(resp, f"chain_end_{chain_ends}") | |
def on_chain_error(self, error: BaseException, **kwargs: Any) -> None: | |
"""Run when chain errors.""" | |
self.metrics["step"] += 1 | |
self.metrics["errors"] += 1 | |
def on_tool_start( | |
self, serialized: Dict[str, Any], input_str: str, **kwargs: Any | |
) -> None: | |
"""Run when tool starts running.""" | |
self.metrics["step"] += 1 | |
self.metrics["tool_starts"] += 1 | |
self.metrics["starts"] += 1 | |
tool_starts = self.metrics["tool_starts"] | |
resp: Dict[str, Any] = {} | |
resp.update({"action": "on_tool_start", "input_str": input_str}) | |
resp.update(flatten_dict(serialized)) | |
resp.update(self.metrics) | |
self.mlflg.metrics(self.metrics, step=self.metrics["step"]) | |
self.records["on_tool_start_records"].append(resp) | |
self.records["action_records"].append(resp) | |
self.mlflg.jsonf(resp, f"tool_start_{tool_starts}") | |
def on_tool_end(self, output: str, **kwargs: Any) -> None: | |
"""Run when tool ends running.""" | |
self.metrics["step"] += 1 | |
self.metrics["tool_ends"] += 1 | |
self.metrics["ends"] += 1 | |
tool_ends = self.metrics["tool_ends"] | |
resp: Dict[str, Any] = {} | |
resp.update({"action": "on_tool_end", "output": output}) | |
resp.update(self.metrics) | |
self.mlflg.metrics(self.metrics, step=self.metrics["step"]) | |
self.records["on_tool_end_records"].append(resp) | |
self.records["action_records"].append(resp) | |
self.mlflg.jsonf(resp, f"tool_end_{tool_ends}") | |
def on_tool_error(self, error: BaseException, **kwargs: Any) -> None: | |
"""Run when tool errors.""" | |
self.metrics["step"] += 1 | |
self.metrics["errors"] += 1 | |
def on_text(self, text: str, **kwargs: Any) -> None: | |
""" | |
Run when agent is ending. | |
""" | |
self.metrics["step"] += 1 | |
self.metrics["text_ctr"] += 1 | |
text_ctr = self.metrics["text_ctr"] | |
resp: Dict[str, Any] = {} | |
resp.update({"action": "on_text", "text": text}) | |
resp.update(self.metrics) | |
self.mlflg.metrics(self.metrics, step=self.metrics["step"]) | |
self.records["on_text_records"].append(resp) | |
self.records["action_records"].append(resp) | |
self.mlflg.jsonf(resp, f"on_text_{text_ctr}") | |
def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> None: | |
"""Run when agent ends running.""" | |
self.metrics["step"] += 1 | |
self.metrics["agent_ends"] += 1 | |
self.metrics["ends"] += 1 | |
agent_ends = self.metrics["agent_ends"] | |
resp: Dict[str, Any] = {} | |
resp.update( | |
{ | |
"action": "on_agent_finish", | |
"output": finish.return_values["output"], | |
"log": finish.log, | |
} | |
) | |
resp.update(self.metrics) | |
self.mlflg.metrics(self.metrics, step=self.metrics["step"]) | |
self.records["on_agent_finish_records"].append(resp) | |
self.records["action_records"].append(resp) | |
self.mlflg.jsonf(resp, f"agent_finish_{agent_ends}") | |
def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any: | |
"""Run on agent action.""" | |
self.metrics["step"] += 1 | |
self.metrics["tool_starts"] += 1 | |
self.metrics["starts"] += 1 | |
tool_starts = self.metrics["tool_starts"] | |
resp: Dict[str, Any] = {} | |
resp.update( | |
{ | |
"action": "on_agent_action", | |
"tool": action.tool, | |
"tool_input": action.tool_input, | |
"log": action.log, | |
} | |
) | |
resp.update(self.metrics) | |
self.mlflg.metrics(self.metrics, step=self.metrics["step"]) | |
self.records["on_agent_action_records"].append(resp) | |
self.records["action_records"].append(resp) | |
self.mlflg.jsonf(resp, f"agent_action_{tool_starts}") | |
def _create_session_analysis_df(self) -> Any: | |
"""Create a dataframe with all the information from the session.""" | |
pd = import_pandas() | |
on_llm_start_records_df = pd.DataFrame(self.records["on_llm_start_records"]) | |
on_llm_end_records_df = pd.DataFrame(self.records["on_llm_end_records"]) | |
llm_input_columns = ["step", "prompt"] | |
if "name" in on_llm_start_records_df.columns: | |
llm_input_columns.append("name") | |
elif "id" in on_llm_start_records_df.columns: | |
# id is llm class's full import path. For example: | |
# ["langchain", "llms", "openai", "AzureOpenAI"] | |
on_llm_start_records_df["name"] = on_llm_start_records_df["id"].apply( | |
lambda id_: id_[-1] | |
) | |
llm_input_columns.append("name") | |
llm_input_prompts_df = ( | |
on_llm_start_records_df[llm_input_columns] | |
.dropna(axis=1) | |
.rename({"step": "prompt_step"}, axis=1) | |
) | |
complexity_metrics_columns = [] | |
visualizations_columns = [] | |
complexity_metrics_columns = [ | |
"flesch_reading_ease", | |
"flesch_kincaid_grade", | |
"smog_index", | |
"coleman_liau_index", | |
"automated_readability_index", | |
"dale_chall_readability_score", | |
"difficult_words", | |
"linsear_write_formula", | |
"gunning_fog", | |
# "text_standard", | |
"fernandez_huerta", | |
"szigriszt_pazos", | |
"gutierrez_polini", | |
"crawford", | |
"gulpease_index", | |
"osman", | |
] | |
visualizations_columns = ["dependency_tree", "entities"] | |
llm_outputs_df = ( | |
on_llm_end_records_df[ | |
[ | |
"step", | |
"text", | |
"token_usage_total_tokens", | |
"token_usage_prompt_tokens", | |
"token_usage_completion_tokens", | |
] | |
+ complexity_metrics_columns | |
+ visualizations_columns | |
] | |
.dropna(axis=1) | |
.rename({"step": "output_step", "text": "output"}, axis=1) | |
) | |
session_analysis_df = pd.concat([llm_input_prompts_df, llm_outputs_df], axis=1) | |
session_analysis_df["chat_html"] = session_analysis_df[ | |
["prompt", "output"] | |
].apply( | |
lambda row: construct_html_from_prompt_and_generation( | |
row["prompt"], row["output"] | |
), | |
axis=1, | |
) | |
return session_analysis_df | |
def flush_tracker(self, langchain_asset: Any = None, finish: bool = False) -> None: | |
pd = import_pandas() | |
self.mlflg.table("action_records", pd.DataFrame(self.records["action_records"])) | |
session_analysis_df = self._create_session_analysis_df() | |
chat_html = session_analysis_df.pop("chat_html") | |
chat_html = chat_html.replace("\n", "", regex=True) | |
self.mlflg.table("session_analysis", pd.DataFrame(session_analysis_df)) | |
self.mlflg.html("".join(chat_html.tolist()), "chat_html") | |
if langchain_asset: | |
# To avoid circular import error | |
# mlflow only supports LLMChain asset | |
if "langchain.chains.llm.LLMChain" in str(type(langchain_asset)): | |
self.mlflg.langchain_artifact(langchain_asset) | |
else: | |
langchain_asset_path = str(Path(self.temp_dir.name, "model.json")) | |
try: | |
langchain_asset.save(langchain_asset_path) | |
self.mlflg.artifact(langchain_asset_path) | |
except ValueError: | |
try: | |
langchain_asset.save_agent(langchain_asset_path) | |
self.mlflg.artifact(langchain_asset_path) | |
except AttributeError: | |
print("Could not save model.") | |
traceback.print_exc() | |
pass | |
except NotImplementedError: | |
print("Could not save model.") | |
traceback.print_exc() | |
pass | |
except NotImplementedError: | |
print("Could not save model.") | |
traceback.print_exc() | |
pass | |
if finish: | |
self.mlflg.finish_run() | |
self._reset() | |