Spaces:
Runtime error
Runtime error
"""Module implements an agent that uses OpenAI's APIs function enabled API.""" | |
from typing import Any, List, Optional, Sequence, Tuple, Union | |
from langchain_core.agents import AgentAction, AgentFinish | |
from langchain_core.language_models import BaseLanguageModel | |
from langchain_core.messages import ( | |
BaseMessage, | |
SystemMessage, | |
) | |
from langchain_core.prompts import BasePromptTemplate | |
from langchain_core.prompts.chat import ( | |
BaseMessagePromptTemplate, | |
ChatPromptTemplate, | |
HumanMessagePromptTemplate, | |
MessagesPlaceholder, | |
) | |
from langchain_core.pydantic_v1 import root_validator | |
from langchain.agents import BaseSingleActionAgent | |
from langchain.agents.format_scratchpad.openai_functions import ( | |
format_to_openai_function_messages, | |
) | |
from langchain.agents.output_parsers.openai_functions import ( | |
OpenAIFunctionsAgentOutputParser, | |
) | |
from langchain.callbacks.base import BaseCallbackManager | |
from langchain.callbacks.manager import Callbacks | |
from langchain.chat_models.openai import ChatOpenAI | |
from langchain.tools.base import BaseTool | |
from langchain.tools.render import format_tool_to_openai_function | |
class OpenAIFunctionsAgent(BaseSingleActionAgent): | |
"""An Agent driven by OpenAIs function powered API. | |
Args: | |
llm: This should be an instance of ChatOpenAI, specifically a model | |
that supports using `functions`. | |
tools: The tools this agent has access to. | |
prompt: The prompt for this agent, should support agent_scratchpad as one | |
of the variables. For an easy way to construct this prompt, use | |
`OpenAIFunctionsAgent.create_prompt(...)` | |
""" | |
llm: BaseLanguageModel | |
tools: Sequence[BaseTool] | |
prompt: BasePromptTemplate | |
def get_allowed_tools(self) -> List[str]: | |
"""Get allowed tools.""" | |
return [t.name for t in self.tools] | |
def validate_llm(cls, values: dict) -> dict: | |
if not isinstance(values["llm"], ChatOpenAI): | |
raise ValueError("Only supported with ChatOpenAI models.") | |
return values | |
def validate_prompt(cls, values: dict) -> dict: | |
prompt: BasePromptTemplate = values["prompt"] | |
if "agent_scratchpad" not in prompt.input_variables: | |
raise ValueError( | |
"`agent_scratchpad` should be one of the variables in the prompt, " | |
f"got {prompt.input_variables}" | |
) | |
return values | |
def input_keys(self) -> List[str]: | |
"""Get input keys. Input refers to user input here.""" | |
return ["input"] | |
def functions(self) -> List[dict]: | |
return [dict(format_tool_to_openai_function(t)) for t in self.tools] | |
def plan( | |
self, | |
intermediate_steps: List[Tuple[AgentAction, str]], | |
callbacks: Callbacks = None, | |
with_functions: bool = True, | |
**kwargs: Any, | |
) -> Union[AgentAction, AgentFinish]: | |
"""Given input, decided what to do. | |
Args: | |
intermediate_steps: Steps the LLM has taken to date, along with observations | |
**kwargs: User inputs. | |
Returns: | |
Action specifying what tool to use. | |
""" | |
agent_scratchpad = format_to_openai_function_messages(intermediate_steps) | |
selected_inputs = { | |
k: kwargs[k] for k in self.prompt.input_variables if k != "agent_scratchpad" | |
} | |
full_inputs = dict(**selected_inputs, agent_scratchpad=agent_scratchpad) | |
prompt = self.prompt.format_prompt(**full_inputs) | |
messages = prompt.to_messages() | |
if with_functions: | |
predicted_message = self.llm.predict_messages( | |
messages, | |
functions=self.functions, | |
callbacks=callbacks, | |
) | |
else: | |
predicted_message = self.llm.predict_messages( | |
messages, | |
callbacks=callbacks, | |
) | |
agent_decision = OpenAIFunctionsAgentOutputParser._parse_ai_message( | |
predicted_message | |
) | |
return agent_decision | |
async def aplan( | |
self, | |
intermediate_steps: List[Tuple[AgentAction, str]], | |
callbacks: Callbacks = None, | |
**kwargs: Any, | |
) -> Union[AgentAction, AgentFinish]: | |
"""Given input, decided what to do. | |
Args: | |
intermediate_steps: Steps the LLM has taken to date, | |
along with observations | |
**kwargs: User inputs. | |
Returns: | |
Action specifying what tool to use. | |
""" | |
agent_scratchpad = format_to_openai_function_messages(intermediate_steps) | |
selected_inputs = { | |
k: kwargs[k] for k in self.prompt.input_variables if k != "agent_scratchpad" | |
} | |
full_inputs = dict(**selected_inputs, agent_scratchpad=agent_scratchpad) | |
prompt = self.prompt.format_prompt(**full_inputs) | |
messages = prompt.to_messages() | |
predicted_message = await self.llm.apredict_messages( | |
messages, functions=self.functions, callbacks=callbacks | |
) | |
agent_decision = OpenAIFunctionsAgentOutputParser._parse_ai_message( | |
predicted_message | |
) | |
return agent_decision | |
def return_stopped_response( | |
self, | |
early_stopping_method: str, | |
intermediate_steps: List[Tuple[AgentAction, str]], | |
**kwargs: Any, | |
) -> AgentFinish: | |
"""Return response when agent has been stopped due to max iterations.""" | |
if early_stopping_method == "force": | |
# `force` just returns a constant string | |
return AgentFinish( | |
{"output": "Agent stopped due to iteration limit or time limit."}, "" | |
) | |
elif early_stopping_method == "generate": | |
# Generate does one final forward pass | |
agent_decision = self.plan( | |
intermediate_steps, with_functions=False, **kwargs | |
) | |
if type(agent_decision) == AgentFinish: | |
return agent_decision | |
else: | |
raise ValueError( | |
f"got AgentAction with no functions provided: {agent_decision}" | |
) | |
else: | |
raise ValueError( | |
"early_stopping_method should be one of `force` or `generate`, " | |
f"got {early_stopping_method}" | |
) | |
def create_prompt( | |
cls, | |
system_message: Optional[SystemMessage] = SystemMessage( | |
content="You are a helpful AI assistant." | |
), | |
extra_prompt_messages: Optional[List[BaseMessagePromptTemplate]] = None, | |
) -> BasePromptTemplate: | |
"""Create prompt for this agent. | |
Args: | |
system_message: Message to use as the system message that will be the | |
first in the prompt. | |
extra_prompt_messages: Prompt messages that will be placed between the | |
system message and the new human input. | |
Returns: | |
A prompt template to pass into this agent. | |
""" | |
_prompts = extra_prompt_messages or [] | |
messages: List[Union[BaseMessagePromptTemplate, BaseMessage]] | |
if system_message: | |
messages = [system_message] | |
else: | |
messages = [] | |
messages.extend( | |
[ | |
*_prompts, | |
HumanMessagePromptTemplate.from_template("{input}"), | |
MessagesPlaceholder(variable_name="agent_scratchpad"), | |
] | |
) | |
return ChatPromptTemplate(messages=messages) | |
def from_llm_and_tools( | |
cls, | |
llm: BaseLanguageModel, | |
tools: Sequence[BaseTool], | |
callback_manager: Optional[BaseCallbackManager] = None, | |
extra_prompt_messages: Optional[List[BaseMessagePromptTemplate]] = None, | |
system_message: Optional[SystemMessage] = SystemMessage( | |
content="You are a helpful AI assistant." | |
), | |
**kwargs: Any, | |
) -> BaseSingleActionAgent: | |
"""Construct an agent from an LLM and tools.""" | |
if not isinstance(llm, ChatOpenAI): | |
raise ValueError("Only supported with ChatOpenAI models.") | |
prompt = cls.create_prompt( | |
extra_prompt_messages=extra_prompt_messages, | |
system_message=system_message, | |
) | |
return cls( | |
llm=llm, | |
prompt=prompt, | |
tools=tools, | |
callback_manager=callback_manager, | |
**kwargs, | |
) | |