S3Diff / src /inference_s3diff.py
zhangap's picture
Upload 213 files
36d9761 verified
raw
history blame
8.41 kB
import os
import gc
import tqdm
import math
import lpips
import pyiqa
import argparse
import clip
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
import transformers
from omegaconf import OmegaConf
from accelerate import Accelerator
from accelerate.utils import set_seed
from PIL import Image
from torchvision import transforms
# from tqdm.auto import tqdm
import diffusers
import utils.misc as misc
from diffusers.utils.import_utils import is_xformers_available
from diffusers.optimization import get_scheduler
from de_net import DEResNet
from s3diff_tile import S3Diff
from my_utils.testing_utils import parse_args_paired_testing, PlainDataset, lr_proc
from utils.util_image import ImageSpliterTh
from my_utils.utils import instantiate_from_config
from pathlib import Path
from utils import util_image
from utils.wavelet_color import wavelet_color_fix, adain_color_fix
def evaluate(in_path, ref_path, ntest):
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
metric_dict = {}
metric_dict["clipiqa"] = pyiqa.create_metric('clipiqa').to(device)
metric_dict["musiq"] = pyiqa.create_metric('musiq').to(device)
metric_dict["niqe"] = pyiqa.create_metric('niqe').to(device)
metric_dict["maniqa"] = pyiqa.create_metric('maniqa').to(device)
metric_paired_dict = {}
in_path = Path(in_path) if not isinstance(in_path, Path) else in_path
assert in_path.is_dir()
ref_path_list = None
if ref_path is not None:
ref_path = Path(ref_path) if not isinstance(ref_path, Path) else ref_path
ref_path_list = sorted([x for x in ref_path.glob("*.[jpJP][pnPN]*[gG]")])
if ntest is not None: ref_path_list = ref_path_list[:ntest]
metric_paired_dict["psnr"]=pyiqa.create_metric('psnr', test_y_channel=True, color_space='ycbcr').to(device)
metric_paired_dict["lpips"]=pyiqa.create_metric('lpips').to(device)
metric_paired_dict["dists"]=pyiqa.create_metric('dists').to(device)
metric_paired_dict["ssim"]=pyiqa.create_metric('ssim', test_y_channel=True, color_space='ycbcr' ).to(device)
lr_path_list = sorted([x for x in in_path.glob("*.[jpJP][pnPN]*[gG]")])
if ntest is not None: lr_path_list = lr_path_list[:ntest]
print(f'Find {len(lr_path_list)} images in {in_path}')
result = {}
for i in tqdm.tqdm(range(len(lr_path_list))):
_in_path = lr_path_list[i]
_ref_path = ref_path_list[i] if ref_path_list is not None else None
im_in = util_image.imread(_in_path, chn='rgb', dtype='float32') # h x w x c
im_in_tensor = util_image.img2tensor(im_in).cuda() # 1 x c x h x w
for key, metric in metric_dict.items():
with torch.cuda.amp.autocast():
result[key] = result.get(key, 0) + metric(im_in_tensor).item()
if ref_path is not None:
im_ref = util_image.imread(_ref_path, chn='rgb', dtype='float32') # h x w x c
im_ref_tensor = util_image.img2tensor(im_ref).cuda()
for key, metric in metric_paired_dict.items():
result[key] = result.get(key, 0) + metric(im_in_tensor, im_ref_tensor).item()
if ref_path is not None:
fid_metric = pyiqa.create_metric('fid')
result['fid'] = fid_metric(in_path, ref_path)
print_results = []
for key, res in result.items():
if key == 'fid':
print(f"{key}: {res:.2f}")
print_results.append(f"{key}: {res:.2f}")
else:
print(f"{key}: {res/len(lr_path_list):.5f}")
print_results.append(f"{key}: {res/len(lr_path_list):.5f}")
return print_results
def main(args):
config = OmegaConf.load(args.base_config)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with=args.report_to,
)
if accelerator.is_local_main_process:
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
if args.seed is not None:
set_seed(args.seed)
if accelerator.is_main_process:
os.makedirs(os.path.join(args.output_dir, "checkpoints"), exist_ok=True)
os.makedirs(os.path.join(args.output_dir, "eval"), exist_ok=True)
# initialize net_sr
net_sr = S3Diff(lora_rank_unet=args.lora_rank_unet, lora_rank_vae=args.lora_rank_vae, sd_path=args.sd_path, pretrained_path=args.pretrained_path, args=args)
net_sr.set_eval()
net_de = DEResNet(num_in_ch=3, num_degradation=2)
net_de.load_model(args.de_net_path)
net_de = net_de.cuda()
net_de.eval()
if args.enable_xformers_memory_efficient_attention:
if is_xformers_available():
net_sr.unet.enable_xformers_memory_efficient_attention()
else:
raise ValueError("xformers is not available, please install it by running `pip install xformers`")
if args.gradient_checkpointing:
net_sr.unet.enable_gradient_checkpointing()
if args.allow_tf32:
torch.backends.cuda.matmul.allow_tf32 = True
dataset_val = PlainDataset(config.validation)
dl_val = torch.utils.data.DataLoader(dataset_val, batch_size=1, shuffle=False, num_workers=0)
# Prepare everything with our `accelerator`.
net_sr, net_de = accelerator.prepare(net_sr, net_de)
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Move al networksr to device and cast to weight_dtype
net_sr.to(accelerator.device, dtype=weight_dtype)
net_de.to(accelerator.device, dtype=weight_dtype)
offset = args.padding_offset
for step, batch_val in enumerate(dl_val):
lr_path = batch_val['lr_path'][0]
(path, name) = os.path.split(lr_path)
im_lr = batch_val['lr'].cuda()
im_lr = im_lr.to(memory_format=torch.contiguous_format).float()
ori_h, ori_w = im_lr.shape[2:]
im_lr_resize = F.interpolate(
im_lr,
size=(ori_h * config.sf,
ori_w * config.sf),
mode='bicubic',
)
im_lr_resize = im_lr_resize.contiguous()
im_lr_resize_norm = im_lr_resize * 2 - 1.0
im_lr_resize_norm = torch.clamp(im_lr_resize_norm, -1.0, 1.0)
resize_h, resize_w = im_lr_resize_norm.shape[2:]
pad_h = (math.ceil(resize_h / 64)) * 64 - resize_h
pad_w = (math.ceil(resize_w / 64)) * 64 - resize_w
im_lr_resize_norm = F.pad(im_lr_resize_norm, pad=(0, pad_w, 0, pad_h), mode='reflect')
B = im_lr_resize.size(0)
with torch.no_grad():
# forward pass
deg_score = net_de(im_lr)
pos_tag_prompt = [args.pos_prompt for _ in range(B)]
neg_tag_prompt = [args.neg_prompt for _ in range(B)]
x_tgt_pred = accelerator.unwrap_model(net_sr)(im_lr_resize_norm, deg_score, pos_prompt=pos_tag_prompt, neg_prompt=neg_tag_prompt)
x_tgt_pred = x_tgt_pred[:, :, :resize_h, :resize_w]
out_img = (x_tgt_pred * 0.5 + 0.5).cpu().detach()
output_pil = transforms.ToPILImage()(out_img[0])
if args.align_method == 'nofix':
output_pil = output_pil
else:
im_lr_resize = transforms.ToPILImage()(im_lr_resize[0].cpu().detach())
if args.align_method == 'wavelet':
output_pil = wavelet_color_fix(output_pil, im_lr_resize)
elif args.align_method == 'adain':
output_pil = adain_color_fix(output_pil, im_lr_resize)
fname, ext = os.path.splitext(name)
outf = os.path.join(args.output_dir, fname+'.png')
output_pil.save(outf)
print_results = evaluate(args.output_dir, args.ref_path, None)
out_t = os.path.join(args.output_dir, 'results.txt')
with open(out_t, 'w', encoding='utf-8') as f:
for item in print_results:
f.write(f"{item}\n")
gc.collect()
torch.cuda.empty_cache()
if __name__ == "__main__":
args = parse_args_paired_testing()
main(args)